
Partial Combinatory Algebras
Andrej Bauer

January 5, 2025

Abstract

We outline a plan of formalization for partial combinatory algebras (PCA), including
combinatory completeness, programming with PCAs, and some examples of PCAs. Time
permitting, we will formalize the typed version as well.

This blueprint, and more generally the partial-combinatory-algebras Lean project, is
part of the teaching materials for the course Formalized mathematics and proof assistants. It
serves as a model blueprint to help students create their own class project blueprints.

1 Basic definitions
The set of partial elements Ã in A is

Ã = {u ⊆ A | ∀x, y ∈ u. x = y}.

We think of ∅ as the undefined value and {a} the defined, or total value a ∈ A. We construe
each a ∈ A also as the element {a} ∈ Ã, i.e., there is an implicit coercion A → Ã.

Given u ∈ Ã, write u⇓ to mean that u is defined, i.e., ∃a ∈ A. a ∈ u.
Initial experimentation with formalization shows that it is advantageous to work with partial

elements rather than elements, as that avoids coercions and helps the rpoof assistant compute
types. When a partial element should be total this is expressed as a separate claim.

Definition 1.1. A partial application on a set A is a map − ·A − : Ã× Ã → Ã.

We also write u v and u · v in place of u ·A v and we associate application to the left, so that
u · v · w = (u · v) · w.

The preceding defintion is non-standard, as one usually expects −·A− : A×A → Ã. However,
as explained above, we prefer our definition as it is easier to work with. You might also have
expected strictness conditions stating that u ·A v ⇓ implies u⇓ and v ⇓, which we did have in the
initial formalization, but they were never used. It looks like our formalization already lead to a
small discovery, namely that partial combinatory algebras work just as well when its elements
can be applied to undefined values.

Definition 1.2. A set A with a partial map − ·A − is a partial combinatory algebra (PCA) if

1

https://github.com/andrejbauer/partial-combinatory-algebras
https://www.andrej.com/zapiski/MAT-FORMATH-2024/book/


there are elements K, S ∈ Ã such that, for all u, v, w ∈ Ã:

K ⇓, S ⇓,
u⇓ ⇒ Ku⇓, u⇓ ⇒ Su⇓,
u⇓ ∧ v ⇓ ⇒ Ku v ⇓, u⇓ ∧ v ⇓ ⇒ Su v ⇓,
u⇓ ∧ v ⇓ ⇒ Ku v = u, u⇓ ∧ v ⇓ ∧ w ⇓ ⇒ Su v w ⇓,

u⇓ ∧ v ⇓ ∧ w ⇓ ⇒ Su v w = (uw) (v w),

2 Combinatory completeness
Definition 2.1. Given a set Γ of variables and a set A of elements, the expressions ExprΓA are
generated inductively by the following clauses:

• the constants K and S are expressions,

• an element a ∈ A is an expression,

• a variable x ∈ Γ is an expression,

• if e1 and e2 are expressions then e1 · e2 is an expression.
The application e1 · e2 in the third clause of the definition is formal, i.e., it is just a constructor
of an inductive datatype. We again deviated from the standard definition in an inessential way
by including primitive constants K and S, separate from the corresponding elements of A.

Given a set of variables Γ and a set A, a valuation is a map η : Γ → A which assigns elements
to variables.
Definition 2.2. Given a valuation η : Γ → A, x ∈ A and a ∈ a, we may override η to get a
valuation η[x 7→ a] : Γ → A such that

(η[x 7→ a])y =

{
η(y) if y ∈ Γ,
a if y = x.

Definition 2.3. The evaluation [[e]] η of an expression e ∈ ExprΓA in a PCA A at a valuation
η : Γ → A is defined recursively by the clauses

[[K]] η = K

[[S]] η = K

[[a]] η = a if a ∈ A

[[x]] η = η(x) if x ∈ Γ

[[e1 · e2]] η = ([[e1]] η) ·A ([[e2]] η).

Definition 2.4. An expression e ∈ ExprΓA is defined when [[e]] η ⇓ for all η : Γ → A.
Definition 2.5. The abstraction of an expression e ∈ ExprΓA with respect to a variable x ∈ Γ
is the expression 〈x〉 e ∈ ExprΓA defined recursively by

〈x〉x = S · K · K,
〈x〉 y = K · y if x 6= y ∈ Γ,

〈x〉 a = K · a if a ∈ A,

〈x〉 (e1 · e2) = S · (〈x〉 e1) · (〈x〉 e2).

2



Proposition 2.6. An abstraction 〈x〉 e is defined.

Proof. By straightforward structural induction on e.

Proposition 2.7. Let x ∈ Γ and e ∈ Expr (Γ ∪ {x})A. Then for every a ∈ A and η : Γ → A

[[(〈x〉 e) · a]] η = [[e]] η[x 7→ a].

Proof. By straightforward structural induction on e.

3 Programming with PCAs
We next show how to write programs in a PCA A. We call the elements of A accomplishing
various programming tasks combinators.

Definition 3.1 (Identity). There is the identity combinator I ∈ A such that I a = a for all
a ∈ A.

Definition 3.2 (Pairing). There are combinators pair, fst, snd ∈ A such that, for all a, b ∈ A,

fst (pair a b) = a, snd (pair a b) = b.

Definition 3.3 (Booleans). There are combinators ite fal, tru ∈ A such that, for all a, b ∈ a,

ite tru , a b = aandite fal a b = b.

Definition 3.4 (Numerals). For each n ∈ N there is n ∈ A, as well as combinators succ, primrec ∈
A such that, for all n ∈ N and a, f ∈ A,

succn = n+ 1,

primrec a f 0 = a,

primrec a f n+ 1 = f n (primrec a f n).

Definition 3.5. There is a combinator Y ∈ A such that, for all a ∈ A,

Y a = a(Z a).

Definition 3.6 (General recursion). There is a combinator Z ∈ A such that, for all f, a ∈ A,

Z f ⇓, and Z f a = f(Z f) a.

Definition 3.7. A partial map f : A ⇀ A is represented by a ∈ A when, for all b ∈ B, f(b) = a·b.

Theorem 3.8. Every general recursive map f : N ⇀ N is represented in the following sense:
there is a ∈ A such that, for all n ∈ N, if f(n)⇓ then f(n) = a · n.

4 (Total) combinatory algebras
Definition 4.1. A (total) combinatory algebra (CA) is given by a carrier set A and a total binary
operation − · − : A×A → A, such that there are K, S satisfying the characteristic equations

K · x · y = x and S · x · y · z = (x · z) · (y · z).

Proposition 4.2. Every combinatory algebra is a partial combinatory algebra.

Proof. Simply reuse the total application as the partial one.

3



5 Examples of PCAs
5.1 Free combinatory algebra
Definition 5.1. The free combinatory algebra is generated freely by the symbols K and S and
formal binary application, quotiented by provable equality.

5.2 The graph model
Definition 5.2. A listing on a set A is a section fromList : ListA → A and a retraction toList :
A → ListA.

Suppose A is a set with a listing. It induces a pairing on A: 〈x, y〉 = fromList [x, y] with
corresponding projections. Each x ∈ A may be seen as a finite subset of A,

toSetx = {y | y ∈ toListx}.

Definition 5.3. The application − · − : P A× P A → P A is defined by

S · T = {x ∈ A | ∃y ∈ A. toSet y ⊆ T ∧ 〈x, y〉 ∈ S}.

Theorem 5.4. The set P A with the application as above is a combinatory algebra.

4


	Basic definitions
	Combinatory completeness
	Programming with PCAs
	(Total) combinatory algebras
	Examples of PCAs
	Free combinatory algebra
	The graph model


