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Generalised domain theories: stable domain theory, bidomains (Berry);
sequential algorithms (Berry, Curien); game semantics (AJM, HO); domains
as presheaf categories (e.g. Girard’s quantitative domains); categorical
axiomatisations; ...

arose in answer to limitations of traditional domain theory:
operational semantics; nondeterministic dataflow; probability and higher types;
probability and nondeterminism; concurrency; ...
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Event structures and their maps
An event structure comprises (E,≤,Con), events E, a partial order of causal
dependency ≤, and consistency a family Con of finite subsets of E, s.t.
{e′ | e′ ≤ e} is finite, ...

Its configurations C∞(E) comprise those subsets x ⊆ E which are
consistent, i.e. X ⊆fin x⇒ X ∈ Con, and
≤-down-closed, i.e. e′ ≤ e ∈ x⇒ e′ ∈ x.

(C∞(E),⊆) is a dI-domain (Berry) and all such are so obtained.
Often concentrate on the finite configurations C(E).

A map of event structures f : E → E′ is a partial function f : E ⇀ E′ such
that, for all x ∈ C(E),

fx ∈ C(E′) and e1, e2 ∈ x & f(e1) = f(e2)⇒ e1 = e2 .

Maps reflect causal dependency locally: e′, e ∈ x & f(e′) ≤ f(e)⇒ e′ ≤ e .
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Concurrent games

Games and strategies are represented by event structures with polarity, an event
structure (E,≤,Con) where events E carry a polarity +/− (Player/Opponent),
respected by maps.

(Simple) Parallel composition: A‖B , by juxtaposition.

Dual, B⊥, of an event structure with polarity B is a copy of the event structure
B with a reversal of polarities; this switches the roles of Player and Opponent.
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Concurrent plays and strategies

A nondeterministic play in a game A is represented by a total map

S

σ
��

A
preserving polarity; S is the event structure with polarity describing the moves
played.

A strategy in a game A is a (special) nondeterministic play σ : S → A .

A strategy from A to B is a strategy in A⊥ ‖ B, so σ : S → A⊥ ‖ B .
[Conway, Joyal]

NB: A strategy in a game A is a strategy for Player;
a strategy for Opponent - a counter-strategy - is a strategy in A⊥.
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A strategy - an example

S ⊕ ⊕

	
_LLR

	
_LLR

configurations of S = “states of play”

σ

��

A ⊕

	 	

configurations of A = “positions of the game”

The strategy: answer either move of Opponent by the Player move.
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Example: copycat strategy from A to A

CCA

A⊥ A

a2 	 � ,,2 ⊕ a2

a1 ⊕

_LLR

	

_LLR

�llr a1
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Composition of σ : S → A⊥‖B, τ : T → B⊥‖C via pullback:

Ignoring polarities, the composite partial map

T ~ S

yy

//

τ~σ

��

%%

T�S

τ�σ

��

S‖C

σ‖C %%

A‖T

A‖τyy

A‖B‖C // A‖C

has partial-total factorization whose defined part yields

T�S
τ�σ

// A⊥‖C
on re-instating polarities.
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For copycat to be identity w.r.t. composition

a strategy in a game A has to be σ : S → A, a total map of event structures
with polarity, such that
(i) whenever σx ⊆− y in C(A) there is a unique x′ ∈ C(S) so that

x ⊆ x′ & σx′ = y , i.e. x
_

σ
��

⊆ x′
_

σ
��

σx ⊆− y ,

and

(ii) whenever y ⊆+ σx in C(A) there is a (necessarily unique) x′ ∈ C(S) so that

x′ ⊆ x & σx′ = y , i.e. x′
_

σ
��

⊆ x
_

σ
��

y ⊆+ σx .

The only immediate causal dependencies a strategy can introduce: 	_ ⊕
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A bicategory of games

Objects are event structures with polarity—the games, A, B, ... ;
Arrows σ : A + // B are strategies σ : S → A⊥‖B;

2-Cells A
+

σ′

77

+
σ

''

⇓ f B are maps f : S → S′ such that S

σ

=

""

f
// S′.

σ′��

A⊥‖B
The vertical composition of 2-cells is the usual composition of maps. Horizontal
composition is given by � (which extends to a functor via universality).

Full sub-bicategory when games are purely +ve: ‘stable spans’ used in
nondeterministic dataflow—feedback is given by trace; when strategies are
deterministic, Berry’s dI-domains and stable functions, and its subcategories
of Girard’s coherence spaces and qualitative domains. Scott domains?
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Strategies as profunctors

A strategy in a game A is a (special) presheaf over the configurations C(A).

A strategy from A to B is a (special) profunctor from C(A) to C(B).

Recall,
a presheaf over a (partial order) category A is a functor from Aop to Set.

It corresponds to a discrete fibration F : S→ A, ∃!x′. x′
_

F
��

vS x
_

F
��

y vA Fx .

A profunctor from a category A to B is a presheaf over Aop × B.

When replace Set by 0 < 1,
presheaves become down-closed sets and profunctors become relations between
partial orders, cf. approximable mappings.
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Recall the definition of strategy
A strategy in a game A is σ : S → A, a total map of event structures with
polarity, such that

(i) whenever σx ⊆− y in C(A) there is a unique x′ ∈ C(S) so that

x ⊆ x′ & σx′ = y , i.e. x
_

σ
��

⊆ x′
_

σ
��

σx ⊆− y ,

and

(ii) whenever y ⊆+ σx in C(A) there is a (necessarily unique) x′ ∈ C(S) so that

x′ ⊆ x & σx′ = y , i.e. x′
_

σ
��

⊆ x
_

σ
��

y ⊆+ σx .
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An alternative characterization of strategies

Defining a partial order — the Scott order — on configurations of A

y vA x iff y ⊇− · ⊆+ · ⊇− · · · ⊇− · ⊆+ x

we obtain a factorization system ((C(A),vA),⊇−,⊆+), i.e.

x

∃!z. y

v

⊇− z .

⊆
+

Proposition z ∈ C(CCA) iff z2 vA z1.

Theorem Strategies σ : S → A correspond to discrete fibrations

σ“ : (C(S),vS)→ (C(A),vA) , i .e. ∃!x′. x′
_

σ“
��

vS x
_

σ“��

y vA σ“(x) ,which preserve ⊇−, ⊆+ and ∅.
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From strategies to profunctors

A strategy σ from A to B determines a discrete fibration so a presheaf over

(C(A⊥‖B),vA⊥‖B) ∼= (C(A⊥),vA⊥)× (C(B),vB)
∼= (C(A),vA)op × (C(B),vB)

i.e. a profunctor σ“ : (C(A),vA) + // (C(B),vB).

; a lax pseudo functor ( )“ : Games→ Prof ; have (τ�σ)“⇒ τ“ ◦ σ“.
The profunctor composition introduces extra ‘unreachable’ elements.

Laxness prompts: What’s missing in categories and profunctors?
; games as ‘rooted’ factorisation systems, strategies as ‘rooted’ profunctors.
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Games as factorisation systems

A rooted factorisation system (C, L,R, 0) comprises a small category C on
which there is a factorisation system (C, L,R),

so all maps c→ c′ factor uniquely up to iso as c′

c

??

L

// c′′
R

OO
,

with an object 0 s.t. for all objects c in C, there is a path

0←L · →R · · · ←L · →R c , with no nontrivial paths to 0,

· L
&&·

L 88

L
&&

·
· L

88

and · R
&&·

R 88

R
&&

·
· R

88

E.g. ( (C(A),vA) , ⊇−, ⊆+, ∅).
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Strategies
A strategy on a rooted factorization system (A, LA, RA, 0A) is a discrete fibration

F : (S, LS, RS, 0S)→ (A, LA, RA, 0A) ,

from another rooted factorization system (S, LS, RS, 0S), which preserves L, R
maps and 0.
Example: The map σ“ : ((C(S),vS),⊇−,⊆+, ∅)→ ((C(A),vA),⊇−,⊆+, ∅)

induced by a strategy σ : S → A.

Operations (C, L,R, 0)⊥ =def (Cop, Rop, Lop, 0)

(B, LB, RB, 0B)‖(C, LC, RC, 0C) =def (B× C, LB × LC, RB ×RC, (0B, 0C))

Composition: reachable part of profunctor composition.

Games and strategies embed fully and faithfully in rooted factorization systems.
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Bidomains

Berry’s bidomains: (D,≤,v) with functions continuous w.r.t. v and stable
w.r.t. ≤. Represented by bistructures (E,≤L,≤R,#) [1980].

Defining vR = ≤ and

x vL y ⇐⇒ x v y & (∀z ∈ D. (x v z & z vR y)⇒ y = z) ,

a bidomain corresponds to a rooted factorisation system (D,vL,vR,⊥) provided

x ↓L y ⇒ x ↑L y .

Preserved by function space?!

Such rooted bidomains embed faithfully in rooted factorisation systems.
Fully in deterministic strategies of rooted factorisation systems?
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Some unfinished business

• Bidomains?

• How’s the “factorisation story” affected by non-linearity?
Non-linearity via event structures with symmetry.
The Scott order becomes a Scott category.
Strategies as certain fibrations - a characterisation?

• A curiosity?
The Scott order is a bottomless cpo. Algebraic? Not countable basis.
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The influences from domain theory to concurrent games

... are numerous, from broad methodology to specific definitions,

E.g. The definition of probabilistic strategies depends on probabilistic event
structures; essentially event structures with a continuous valuation on the Scott
open sets. A characterisation via a “drop condition,” a condition on the
probabilities assigned to finite configurations.

The “drop” condition on operators is key to the extension to quantum strategies.

LICS’18: Full abstraction for probabilistic PCF via probabilistic strategies with
symmetry – with Simon Castellan, Pierre Clairambault and Hugo Paquet.

Domain theory is here to stay!
Why use a complicated model when a simple model will do?
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