Domains and Games

Glynn Winskel, Cambridge

Generalised domain theories: stable domain theory, bidomains (Berry); sequential algorithms (Berry, Curien); game semantics (AJM, HO); domains as presheaf categories (e.g. Girard's quantitative domains); categorical axiomatisations; ...

arose in answer to limitations of traditional domain theory: operational semantics; nondeterministic dataflow; probability and higher types; probability and nondeterminism; concurrency; ...

Event structures and their maps

An event structure comprises $(E, \leq, \operatorname{Con})$, events E, a partial order of causal dependency \leq , and consistency a family Con of finite subsets of E, s.t. $\{e' \mid e' \leq e\}$ is finite, ...

Its configurations $C^{\infty}(E)$ comprise those subsets $x \subseteq E$ which are consistent, i.e. $X \subseteq_{\text{fin}} x \Rightarrow X \in \text{Con}$, and \leq -down-closed, i.e. $e' \leq e \in x \Rightarrow e' \in x$.

 $(\mathcal{C}^{\infty}(E), \subseteq)$ is a dI-domain (Berry) and all such are so obtained. Often concentrate on the finite configurations $\mathcal{C}(E)$.

A map of event structures $f: E \to E'$ is a partial function $f: E \rightharpoonup E'$ such that, for all $x \in \mathcal{C}(E)$,

 $fx \in \mathcal{C}(E') \text{ and } e_1, e_2 \in x \& f(e_1) = f(e_2) \Rightarrow e_1 = e_2.$

Maps reflect causal dependency locally: $e', e \in x \& f(e') \leq f(e) \Rightarrow e' \leq e$.

Concurrent games

Games and strategies are represented by **event structures with polarity**, an event structure (E, \leq, Con) where events E carry a polarity +/- (Player/Opponent), respected by maps.

(Simple) Parallel composition: A || B, by juxtaposition.

Dual, B^{\perp} , of an event structure with polarity B is a copy of the event structure B with a reversal of polarities; this switches the roles of Player and Opponent.

Concurrent plays and strategies

A **nondeterministic play** in a game A is represented by a total map

S

A

 $\int \sigma$

preserving polarity; S is the event structure with polarity describing the moves played.

A strategy in a game A is a (special) nondeterministic play $\sigma: S \to A$.

A strategy from A to B is a strategy in $A^{\perp} \parallel B$, so $\sigma : S \to A^{\perp} \parallel B$. [Conway, Joyal]

NB: A strategy in a game A is a strategy for Player; a strategy for Opponent - a counter-strategy - is a strategy in A^{\perp} .

A strategy - an example

The strategy: answer either move of Opponent by the Player move.

Example: copycat strategy from A to A

5

Composition of $\sigma: S \to A^{\perp} || B$, $\tau: T \to B^{\perp} || C$ via pullback:

Ignoring polarities, the composite partial map

has partial-total factorization whose defined part yields

$$T \odot S \xrightarrow{\tau \odot \sigma} A^{\perp} \| C$$

on re-instating polarities.

For copycat to be identity w.r.t. composition

The only immediate causal dependencies a strategy can introduce: $\ominus \twoheadrightarrow \oplus$

A bicategory of games

Objects are event structures with polarity—the games, A, B, ...; **Arrows** $\sigma : A \rightarrow B$ are strategies $\sigma : S \rightarrow A^{\perp} || B$;

The vertical composition of 2-cells is the usual composition of maps. Horizontal composition is given by \odot (which extends to a functor via universality).

Full sub-bicategory when games are purely +ve: 'stable spans' used in nondeterministic dataflow—feedback is given by trace; when strategies are deterministic, Berry's dl-domains and stable functions, and its subcategories of Girard's coherence spaces and qualitative domains. Scott domains?

Strategies as profunctors

A strategy in a game A is a (special) presheaf over the configurations C(A). A strategy from A to B is a (special) profunctor from C(A) to C(B). Recall, a **presheaf** over a (partial order) category A is a functor from $\mathbb{A}^{\operatorname{op}}$ to **Set**. It corresponds to a **discrete fibration** $F: \mathbb{S} \to \mathbb{A}$, $\exists !x'$. $x' \to \mathbb{E}_{\mathbb{S}} \to x$ $F \downarrow \qquad \downarrow F$ $y \equiv_{\mathbb{A}} Fx$.

A profunctor from a category \mathbb{A} to \mathbb{B} is a presheaf over $\mathbb{A}^{\mathrm{op}} \times \mathbb{B}$.

When replace Set by 0 < 1,

presheaves become down-closed sets and profunctors become relations between partial orders, cf. approximable mappings.

Recall the definition of strategy

A strategy in a game A is $\sigma: S \to A$, a total map of event structures with polarity, such that

10

An alternative characterization of strategies

Defining a partial order — the Scott order — on configurations of A

$$y \sqsubseteq_A x \text{ iff } y \supseteq^- \cdot \subseteq^+ \cdot \supseteq^- \cdots \supseteq^- \cdot \subseteq^+ x \qquad \qquad x \\ \swarrow \qquad \qquad \downarrow_{\cup} \\ \text{we obtain a factorization system } ((\mathcal{C}(A), \sqsubseteq_A), \supseteq^-, \subseteq^+), \text{ i.e. } \exists !z. \quad y \quad \supseteq^- \quad z.$$

Proposition $z \in \mathcal{C}(\mathbb{C}_A)$ iff $z_2 \sqsubseteq_A z_1$.

Theorem Strategies $\sigma: S \to A$ correspond to discrete fibrations

11

From strategies to profunctors

A strategy σ from A to B determines a discrete fibration so a presheaf over

$$(\mathcal{C}(A^{\perp} || B), \sqsubseteq_{A^{\perp} || B}) \cong (\mathcal{C}(A^{\perp}), \sqsubseteq_{A^{\perp}}) \times (\mathcal{C}(B), \sqsubseteq_B)$$
$$\cong (\mathcal{C}(A), \sqsubseteq_A)^{\mathrm{op}} \times (\mathcal{C}(B), \sqsubseteq_B)$$

i.e. a profunctor $\sigma^{\prime\prime}: (\mathcal{C}(A), \sqsubseteq_A) \twoheadrightarrow (\mathcal{C}(B), \sqsubseteq_B).$

 \rightarrow a lax pseudo functor (_)": Games \rightarrow Prof; have $(\tau \odot \sigma)$ " $\Rightarrow \tau$ " $\circ \sigma$ ". *The profunctor composition introduces extra 'unreachable' elements.*

Laxness prompts: What's missing in categories and profunctors? \sim games as 'rooted' factorisation systems, strategies as 'rooted' profunctors.

Games as factorisation systems

A rooted factorisation system $(\mathbb{C}, L, R, 0)$ comprises a small category \mathbb{C} on which there is a factorisation system (\mathbb{C}, L, R) ,

so all maps
$$c \to c'$$
 factor uniquely up to iso as c' ,
 $\swarrow c' = c''$,
 $c \to c''$

with an object 0 s.t. for all objects c in \mathbb{C} , there is a path

 $0 \leftarrow_L \cdot \rightarrow_R \cdots \leftarrow_L \cdot \rightarrow_R c$, with no nontrivial paths to 0,

E.g. $((\mathcal{C}(A), \sqsubseteq_A), \supseteq^-, \subseteq^+, \emptyset).$

Strategies

A strategy on a rooted factorization system $(\mathbb{A}, L_A, R_A, 0_A)$ is a discrete fibration

```
F: (\mathbb{S}, L_S, R_S, 0_S) \to (\mathbb{A}, L_A, R_A, 0_A),
```

from another rooted factorization system $(S, L_S, R_S, 0_S)$, which preserves L, R maps and 0.

Example: The map $\sigma^{"}: ((\mathcal{C}(S), \sqsubseteq_S), \supseteq^-, \subseteq^+, \emptyset) \to ((\mathcal{C}(A), \sqsubseteq_A), \supseteq^-, \subseteq^+, \emptyset)$ induced by a strategy $\sigma: S \to A$.

Operations $(\mathbb{C}, L, R, 0)^{\perp} =_{\text{def}} (\mathbb{C}^{\text{op}}, R^{\text{op}}, L^{\text{op}}, 0)$

 $(\mathbb{B}, L_B, R_B, 0_B) \| (\mathbb{C}, L_C, R_C, 0_C) =_{\mathrm{def}} (\mathbb{B} \times \mathbb{C}, L_B \times L_C, R_B \times R_C, (0_B, 0_C))$

Composition: reachable part of profunctor composition.

Games and strategies embed fully and faithfully in rooted factorization systems.

Bidomains

Berry's **bidomains**: (D, \leq, \sqsubseteq) with functions continuous w.r.t. \sqsubseteq and stable w.r.t. \leq . Represented by bistructures $(E, \leq_L, \leq_R, \#)$ [1980].

Defining $\sqsubseteq^R = \leq$ and

$$x \sqsubseteq^{L} y \iff x \sqsubseteq y \& (\forall z \in D. (x \sqsubseteq z \& z \sqsubseteq_{R} y) \Rightarrow y = z),$$

a bidomain corresponds to a rooted factorisation system $(D, \sqsubseteq_L, \sqsubseteq_R, \bot)$ provided

$$x\downarrow^L y \Rightarrow x\uparrow^L y.$$

Preserved by function space?!

Such **rooted** bidomains embed faithfully in rooted factorisation systems. *Fully in deterministic strategies of rooted factorisation systems?*

Some unfinished business

• Bidomains?

 How's the "factorisation story" affected by non-linearity? Non-linearity via event structures with symmetry. The Scott order becomes a Scott category. Strategies as certain fibrations - a characterisation?

• A curiosity?

The Scott order is a bottomless cpo. Algebraic? Not countable basis.

The influences from domain theory to concurrent games

... are numerous, from broad methodology to specific definitions,

E.g. The definition of *probabilistic strategies* depends on probabilistic event structures; essentially event structures with a continuous valuation on the Scott open sets. A characterisation via a "drop condition," a condition on the probabilities assigned to finite configurations.

The "drop" condition on operators is key to the extension to quantum strategies.

LICS'18: *Full abstraction for probabilistic PCF via probabilistic strategies with symmetry* – with Simon Castellan, Pierre Clairambault and Hugo Paquet.

Domain theory is here to stay! Why use a complicated model when a simple model will do?