$\mathbb{T}^{\omega}\text{-representations of compact sets}$ through dyadic subbases

Arno Pauly and Hideki Tsuiki

Workshop Domains 2018 7-8 July 2018, Oxford

Represented Space

- Represented space $\mathbf{X} = (X, \delta_X)$:
 - δ_X : partial surjective function from A to X. $(A = \{0, 1\}^{\omega}, \mathbb{N}^{\omega}, ...)$.
 - Lift the computability notion in A to X.

- Sierpinski space $\mathbb{S}=\{\top,\bot\}.~(\mathbb{S},\delta_{\mathbb{S}})$ is a represented space.
 - $\delta_{\mathbb{S}}(0^{\omega}) = \bot$
 - $\delta_{\mathbb{S}}(0^n 1p) = \top$
- Plotkin's $\mathbb{T}=\{0,1,\bot\}.~(\mathbb{T},\delta_{\mathbb{T}})$ is a represented space.
 - $\delta_{\mathbb{T}}(0^{\omega}) = \bot$
 - $\delta_{\mathbb{T}}(0^{2n}1p) = 0$
 - $\delta_{\mathbb{T}}(0^{2n+1}1p) = 1$
- $(\mathbb{T}^{\omega}, \delta_{\mathbb{T}^{\omega}})$ is a represented space.
- We have a derived computability notion on \mathbb{T}^{ω} . $\{0,1\}^{\omega} \xrightarrow{F} \{0,1\}^{\omega}$

 $\mathbb{T}^{\omega} \xrightarrow{f} \mathbb{T}^{\omega}$

 $\delta_{\mathbb{T}}\omega$ $\delta_{\mathbb{T}}\omega$

$\mathbb{T}^{\omega}\text{-}\mathsf{Represented}$ Space

- \mathbb{T}^{ω} -Represented space (X, ψ) :
 - ψ : partial surjective function from \mathbb{T}^{ω} to X.
 - Lift the computability notion in \mathbb{T}^{ω} to X.
 - Note that we consider multi-valued realizers on \mathbb{T}^{ω} .

$\mathbb{T}^{\omega}\text{-}\mathsf{Represented}$ Space

- \mathbb{T}^{ω} -Represented space (X, ψ) :
 - ψ : partial surjective function from \mathbb{T}^{ω} to X.
 - Lift the computability notion in \mathbb{T}^{ω} to X.
 - Note that we consider multi-valued realizers on \mathbb{T}^{ω} .

$\mathbb{T}^{\omega}\text{-}\mathsf{Represented}$ Space

- \mathbb{T}^{ω} -Represented space (X, ψ) :
 - ψ : partial surjective function from \mathbb{T}^{ω} to X.
 - Lift the computability notion in \mathbb{T}^{ω} to X.
 - Note that we consider multi-valued realizers on \mathbb{T}^{ω} .

- $(\mathbb{T}^{\omega}, \preceq)$ has an order structure. It is a Scott domain!
 - We can expect a natural representation of a space with order.

- $(\mathbb{T}^{\omega}, \preceq)$ has an order structure. It is a Scott domain!
 - We can expect a natural representation of a space with order.
- Contains $\{0,1\}^{\omega}$ as top elements.
 - ▶ Sub-structure of the space can be represented with $\{0,1\}^{\omega}$.

- $(\mathbb{T}^{\omega}, \preceq)$ has an order structure. It is a Scott domain!
 - ▶ We can expect a natural representation of a space with order.
- Contains $\{0,1\}^{\omega}$ as top elements.
 - ▶ Sub-structure of the space can be represented with $\{0,1\}^{\omega}$.
- Direct manipulation of a sequence of partial information.

- $(\mathbb{T}^{\omega}, \preceq)$ has an order structure. It is a Scott domain!
 - ▶ We can expect a natural representation of a space with order.
- Contains $\{0,1\}^{\omega}$ as top elements.
 - ▶ Sub-structure of the space can be represented with $\{0,1\}^{\omega}$.
- Direct manipulation of a sequence of partial information.
- Can count the number of bottoms.
 - Some information of the space can be reflected into the number of bottoms.
 - Every n-dimensional second countable metrizable space can be injectively represented in T^ω so that each name contains up to n copies of ⊥ [T 2002].

$\mathbb{T}^{\omega}\text{-sequences}$ as unspecified points.

Suppose that $\delta :\subseteq \{0,1\}^{\omega} \to \mathbf{X}$ is a representation.

- Each infinite sequence (in dom(δ)) specifies a point.
 - ▶ 0101101... $\mapsto x \in X$

$\mathbb{T}^{\omega}\text{-sequences}$ as unspecified points.

Suppose that $\delta :\subseteq \{0,1\}^{\omega} \to \mathbf{X}$ is a representation.

• Each infinite sequence (in dom(δ)) specifies a point.

▶ 0101101... $\mapsto x \in X$

►
$$01 \perp 0 \perp 1... \mapsto \begin{cases} \delta(010001...), \\ \delta(010011...), \\ \delta(011001...), \\ \delta(011011...) \end{cases}$$
 (If all of them are in dom(δ))

$\mathbb{T}^{\omega}\text{-sequences}$ as unspecified points.

Suppose that $\delta :\subseteq \{0,1\}^{\omega} \to \mathbf{X}$ is a representation.

• Each infinite sequence (in dom(δ)) specifies a point.

• 0101101...
$$\mapsto x \in X$$

►
$$01 \pm 0 \pm 1... \mapsto \begin{cases} \delta(010001...), \\ \delta(010011...), \\ \delta(011001...), \\ \delta(011011...) \end{cases}$$
 (If all of them are in dom(δ))

- Can we use it as a \mathbb{T}^{ω} -representation of $\mathcal{P}(\mathbf{X})$?
 - No. (Cardinarity).

\mathbb{T}^{ω} -sequences as unspecified points.

Suppose that $\delta :\subseteq \{0,1\}^{\omega} \to \mathbf{X}$ is a representation.

• Each infinite sequence (in dom(δ)) specifies a point.

▶ 0101101... $\mapsto x \in X$

►
$$01 \perp 0 \perp 1... \mapsto \begin{cases} \delta(010001...), \\ \delta(010011...), \\ \delta(011001...), \\ \delta(011011...) \end{cases}$$
 (If all of them are in dom(δ))

- Can we use it as a \mathbb{T}^{ω} -representation of $\mathcal{P}(\mathbf{X})$?
 - No. (Cardinarity).
- Can we use it as a T^ω-representation of the set K⁻(X) of non-empty compact subsets of X?

\mathbb{T}^{ω} -sequences as unspecified points.

Suppose that $\delta :\subseteq \{0,1\}^{\omega} \to \mathbf{X}$ is a representation.

• Each infinite sequence (in dom(δ)) specifies a point.

▶ 0101101... $\mapsto x \in X$

►
$$01 \perp 0 \perp 1... \mapsto \begin{cases} \delta(010001...), \\ \delta(010011...), \\ \delta(011001...), \\ \delta(011011...) \end{cases}$$
 (If all of them are in dom(δ))

- Can we use it as a \mathbb{T}^{ω} -representation of $\mathcal{P}(\mathbf{X})$?
 - No. (Cardinarity).
- Can we use it as a T^ω-representation of the set K⁻(X) of non-empty compact subsets of X?
 - ► Yes, for X a computably compact computable metric space.

Let $\delta :\subseteq \{0,1\}^{\omega} \to X$ and $\psi :\subseteq \mathbb{T}^{\omega} \to \mathcal{K}^{-}(X)$ be $(\mathbb{T}^{\omega}$ -)representations.

Let $\delta :\subseteq \{0,1\}^{\omega} \to \mathbf{X}$ and $\psi :\subseteq \mathbb{T}^{\omega} \to \mathcal{K}^{-}(\mathbf{X})$ be (\mathbb{T}^{ω}) representations. We define as follows.

• They match if $\{q \mid p \leq q \in \{0,1\}^{\omega}\} \subseteq \operatorname{dom}(\delta) \ (\forall p \in \operatorname{dom}(\psi)) \text{ and } \psi(p) = \{\delta(q) \mid p \leq q \in \{0,1\}^{\omega}\}.$

Let $\delta :\subseteq \{0,1\}^{\omega} \to \mathbf{X}$ and $\psi :\subseteq \mathbb{T}^{\omega} \to \mathcal{K}^{-}(\mathbf{X})$ be (\mathbb{T}^{ω}) representations. We define as follows.

- They match if $\{q \mid p \leq q \in \{0,1\}^{\omega}\} \subseteq \operatorname{dom}(\delta) \ (\forall p \in \operatorname{dom}(\psi)) \text{ and } \psi(p) = \{\delta(q) \mid p \leq q \in \{0,1\}^{\omega}\}.$
- ψ is hereditary if the restriction of ψ to $\uparrow p$ is a representation of $\mathcal{K}^-(\psi(p))$ for $p \in \operatorname{dom}(\psi)$.
 - ▶ Then, $|A| 1 \le \# \{ \bot \in p \}$ for the case $A = \psi(p)$ is a finite set.

Let $\delta :\subseteq \{0,1\}^{\omega} \to \mathbf{X}$ and $\psi :\subseteq \mathbb{T}^{\omega} \to \mathcal{K}^{-}(\mathbf{X})$ be (\mathbb{T}^{ω}) representations. We define as follows.

- They match if $\{q \mid p \leq q \in \{0,1\}^{\omega}\} \subseteq \operatorname{dom}(\delta) \ (\forall p \in \operatorname{dom}(\psi)) \text{ and } \psi(p) = \{\delta(q) \mid p \leq q \in \{0,1\}^{\omega}\}.$
- ψ is hereditary if the restriction of ψ to $\uparrow p$ is a representation of $\mathcal{K}^-(\psi(p))$ for $p \in \operatorname{dom}(\psi)$.

▶ Then, $|A| - 1 \le \#\{\bot \in p\}$ for the case $A = \psi(p)$ is a finite set.

• ψ is minimal if $|\psi(p)| - 1 = \#\{\perp \in p\}$ when $|\psi(p)|$ is finite,

Let $\delta :\subseteq \{0,1\}^{\omega} \to \mathbf{X}$ and $\psi :\subseteq \mathbb{T}^{\omega} \to \mathcal{K}^{-}(\mathbf{X})$ be (\mathbb{T}^{ω}) representations. We define as follows.

- They match if $\{q \mid p \leq q \in \{0,1\}^{\omega}\} \subseteq \operatorname{dom}(\delta) \ (\forall p \in \operatorname{dom}(\psi)) \text{ and } \psi(p) = \{\delta(q) \mid p \leq q \in \{0,1\}^{\omega}\}.$
- ψ is hereditary if the restriction of ψ to $\uparrow p$ is a representation of $\mathcal{K}^-(\psi(p))$ for $p \in \operatorname{dom}(\psi)$.

▶ Then, $|A| - 1 \le \#\{\bot \in p\}$ for the case $A = \psi(p)$ is a finite set.

• ψ is minimal if $|\psi(p)| - 1 = \#\{\perp \in p\}$ when $|\psi(p)|$ is finite,

• ψ is faithful if it is hereditary and minimal.

• If ψ is faithful, then (δ, ψ) match for $\delta = \psi|_{\{0,1\}^{\omega}}$.

Let $\delta :\subseteq \{0,1\}^{\omega} \to \mathbf{X}$ and $\psi :\subseteq \mathbb{T}^{\omega} \to \mathcal{K}^{-}(\mathbf{X})$ be $(\mathbb{T}^{\omega}$ -)representations. We define as follows.

- They match if $\{q \mid p \leq q \in \{0,1\}^{\omega}\} \subseteq \operatorname{dom}(\delta) \ (\forall p \in \operatorname{dom}(\psi)) \text{ and } \psi(p) = \{\delta(q) \mid p \leq q \in \{0,1\}^{\omega}\}.$
- ψ is hereditary if the restriction of ψ to $\uparrow p$ is a representation of $\mathcal{K}^-(\psi(p))$ for $p \in \operatorname{dom}(\psi)$.

▶ Then, $|A| - 1 \le \#\{\bot \in p\}$ for the case $A = \psi(p)$ is a finite set.

- ψ is minimal if $|\psi(p)| 1 = \#\{\perp \in p\}$ when $|\psi(p)|$ is finite,
- ψ is faithful if it is hereditary and minimal.
 - If ψ is faithful, then (δ, ψ) match for $\delta = \psi|_{\{0,1\}^{\omega}}$.

Theorem (Main Theorem)

If **X** is a CCCMS (computably compact computable metric space), then $\mathcal{K}^{-}(\mathbf{X})$ admits a faithful \mathbb{T}^{ω} -representation.

Note1: Applications in finite closed choice and Weihrauch reducibility. Note2: Compact = closed in a compact metric space. $\mathcal{K}(\mathbf{X}) \Leftrightarrow \mathcal{A}(\mathbf{X})$.

Arno Pauly and Hideki Tsuiki

Outline of the proof

```
Computably compact computable metric space
                       1
Existence of proper computable dyadic subbases
                       1
             Domain representation
                        11
       Compact sets are tree-like subsets
                       \Downarrow (Expanding tree-like sets as trees)
 Cantor space (Compact sets are binary trees)
             Faithful representation
```

Outline of the proof

```
Computably compact computable metric space
                       1
Existence of proper computable dyadic subbases
                       1
             Domain representation
                        ╢
       Compact sets are tree-like subsets
                       \Downarrow (Expanding tree-like sets as trees)
 Cantor space (Compact sets are binary trees)
             Faithful representation
```

Closed subsets of Cantor space as binary trees.

- A binary tree (\mathcal{T}) is a prefix-closed subset of $\{0,1\}^*$.
- Infinite paths of $T \in \mathcal{T}$ form a closed subset [T] of $\{0,1\}^{\omega}$.

Closed subsets of Cantor space as binary trees.

- A binary tree (\mathcal{T}) is a prefix-closed subset of $\{0,1\}^*$.
- Infinite paths of $T \in \mathcal{T}$ form a closed subset [T] of $\{0,1\}^{\omega}$.
- A pruned tree (\mathcal{PT}) is a tree T such that $w \in T$ implies $\exists v \in T \ w \sqsubset v$.
- [·] is a one to one correspondence between \mathcal{PT} and $\mathcal{A}(\{0,1\}^{\omega})$ (Closed subsets of $\{0,1\}^{\omega}$).
- Consider \mathbb{T}^{ω} -representation of pruned trees.

 \mathbb{T}^{ω} -representation $\delta_{\mathcal{PT}} : \mathbb{T}^{\omega} \to \mathcal{PT}$ of Pruned Trees Let n(p) for $p \in \{0,1\}^*$ be the enumeration of $\{0,1\}^*$ as blue. For a pruned tree T,

$$\delta_{\mathcal{PT}}^{-1}(T)(n(p)) = \begin{cases} \bot & (both \ 0p, 1p \in T) \\ 0 & (0p \in T) \\ 1 & (1p \in T) \\ 0 \text{ or } 1 & (p \notin T(\text{causes redundancy})) \end{cases}$$

Neither do not happen for a pruned tree.

The number of bottoms

- Let \mathcal{PT} be the \mathbb{T}^{ω} -represented space $(\mathcal{PT}, \delta_{\mathcal{PT}})$.
- $\delta_{\mathcal{T}}: (\{0,1\}^*)^{\omega} \to \mathbb{T}$, $p_1, p_2, \ldots \mapsto \{0,1\}^* \setminus (\uparrow p_1 \cup \uparrow p_1 \cup \ldots)$ is a $(\{0,1\}^*)^{\omega}$ -representation. $\mathcal{T} = (\mathcal{T}, \delta_{\mathcal{T}})$.
- The above computation shows that $Prune : \mathcal{T} \to \mathcal{PT}$ is computable.
- Similarly, one can show that its multi-valued inverse is computable.
- $[\cdot]: \mathcal{T} \to \mathcal{A}(\{0,1\}^{\omega})$ is computable with computable multi-valued inverse.
- Prune \circ $[\cdot]^{-1}$ is a computable isomorphism between $\mathcal{K}(\{0,1\}^{\omega}) = \mathcal{A}(\{0,1\}^{\omega})$ and \mathcal{PT} , and obtain a \mathbb{T}^{ω} -representation of $\mathcal{K}(\{0,1\}^{\omega})$.
- It is a hereditary representation.
- If A is a finite set of cardinarity n, only n − 1 number of ⊥ is left (minimal).

Theorem

 $\mathcal{K}^-(\{0,1\}^\omega)$ has a faithful $\mathbb{T}^\omega\text{-representation}.$

Outline of the proof

```
Computably compact computable metric space
                       1
Existence of proper computable dyadic subbases
                       1
             Domain representation
       Compact sets are tree-like subsets
                       \Downarrow (Expanding tree-like sets as trees)
 Cantor space (Compact sets are binary trees)
             Faithful representation
```

Unit Interval as Retract of the limit-set of a DAG

- Signed digit representation of the unit interval.
- Three-branching, two-merging DAG (Directed Acyclic Graph).
- Infinite paths (obtained as the ideal completion) are representing the unit interval.
- Note: three essentially different paths represent 0.

Unit Interval as Retract of the limit-set of a DAG

- Signed digit representation of the unit interval.
- Three-branching, two-merging DAG (Directed Acyclic Graph).
- Infinite paths (obtained as the ideal completion) are representing the unit interval.
- Note: three essentially different paths represent 0.
- Tree-like subsets (∀p ≠ e ∈ A (∃q ∈ A q ≤¹ p)) of this DAG are representing closed subsets.

Expansion of a DAG to a tree

Question: Which space can be represented as the limit-set of a Scott domain that is obtained as the ideal completion of this kind of DAG?

Outline of the proof

```
Computably compact computable metric space
                       1
Existence of proper computable dyadic subbases
                       JL
            Domain representation
                        ╢
       Compact sets are tree-like subsets
                       \Downarrow (Expanding tree-like sets as trees)
 Cantor space (Compact sets are binary trees)
             Faithful representation
```

Gray code [Gianantonio:1999],[T:2002]

 $G: [-1,1] \to \mathbb{T}^{\omega}$: Injective \mathbb{T}^{ω} -representation of the unit interval.

Dyadic subbase — Generalization of Gray-code.

Definition ([T 2004])

A dyadic subbase over a set X is a map $S : \mathbb{N} \times \{0, 1\} \to \mathcal{P}(X)$ such that $S_{n,0} \cap S_{n,1} = \emptyset$ for every $n \in \mathbb{N}$ and $\{(n,i) \mid x \in S_{n,i}\} = \{(n,i) \mid y \in S_{n,i}\} \Rightarrow x = y$ for $x, y \in X$.

•
$$S_{n,\perp} = X \setminus (S_{n,0} \cup S_{n,1}).$$

• $\varphi_S(x)(n) = \begin{cases} 0 & (x \in S_{n,0}), \\ 1 & (x \in S_{n,1}), \\ \perp & (x \in S_{n,\perp}). \end{cases}$

- $\varphi_{\mathcal{S}}: X \to \mathbb{T}^{\omega}$: embedding into \mathbb{T}^{ω} .
- $\mathbf{X}_{S} = (X, \varphi_{S}^{-1})$ is an admissible \mathbb{T}^{ω} -represented space.
- We say that S is a computable dyadic subbase of a represented space X if X_S is computably isomorphic to X.

n-th coordinate

Two kinds of information.

• Each finite sequence $p \in \mathbb{T}^*$ specifies

$$S(p) = \bigcap_{n \in \operatorname{dom}(p)} S_{n,p(n)}$$
$$\bar{S}(p) = \bigcap_{n \in \operatorname{dom}(p)} (X \setminus S_{n,1-p(n)}) = \bigcap_{n \in \operatorname{dom}(p)} (S_{n,p(n)} \cup S_{n,\perp})$$

Definition

A dyadic subbase S is proper if $\overline{S}(p) = \operatorname{cl} S(p)$ for every $p \in \mathbb{T}^*$.

Arno Pauly and Hideki Tsuiki

Proper dyadic subbase

Recall that S is proper means $\bar{S}(p) = \operatorname{cl} S(p)$ for every $p \in \mathbb{T}^*$.

- Gray-code is a proper dyadic subbase.
- $S_{n,0}$ and $S_{n,1}$ are exteriors of each other. (The case $p = \perp^n 1$.) $S_{n,\perp}$ is the common boundary.

Computability notions of $\bar{S}(p)$ and $\operatorname{cl} S(p)$

Two computability notions $\mathcal{A}(\mathbf{X})$ (closed) and $\mathcal{V}(\mathbf{X})$ (overt) for closed sets.

- $\bar{S}(p) \in \mathcal{A}(X)$ because $\bar{S}(p) = X \setminus (\bigcup_{n \in \mathsf{dom}(p)} S_{n,1-p(n)}).$
 - $\blacktriangleright \ A \in \mathcal{A}(\mathbf{X}) \iff A^{\mathcal{C}} \in \mathcal{O}(\mathbf{X}).$
 - Representation by negative information.
- $\operatorname{cl} S(p) \in \mathcal{V}(\mathsf{X})$ because $\operatorname{cl} S(p) = \operatorname{cl} (\bigcap_{n \in \operatorname{dom}(p)} S_{n,p(n)}).$
 - $A \in \mathcal{V}(\mathbf{X})$ is represented by enumeration of $\{U \mid U \cap A \neq \emptyset\}$.
 - Representation by positive information.
- If S is a proper dyadic subbase, then $\overline{S}(p) = \operatorname{cl} S(p) \in \mathcal{V}(\mathsf{X}) \land \mathcal{K}(\mathsf{X})$.
- $\{\bar{S}(p) \mid p \in \mathbb{T}^*\}$ is a closed base which consists of overt and closed sets.

Let S be a dyadic subbase of a space **X**. Define

$$egin{aligned} \widehat{\mathcal{K}}_{\mathcal{S}} &= \{p_{\langle \leq n \rangle} \mid \exists x \in X \; arphi_{\mathcal{S}}(x) \preceq p, n \in \mathbb{N}\} \ \widehat{D}_{\mathcal{S}} &= ext{the ideal completion of } \widehat{\mathcal{K}}_{\mathcal{S}} \; (\subseteq \mathbb{T}^{\omega}), \ \widehat{\mathcal{L}}_{\mathcal{S}} &= \widehat{D}_{\mathcal{S}} \setminus \widehat{\mathcal{K}}_{\mathcal{S}}. \end{aligned}$$

Theorem (T,Tsukamoto,2015)

Suppose that S is a proper computable dyadic subbase of a CCCMS X. We have something like

By expanding it into tree, we have a \mathbb{T}^{ω} -representation of the set $\mathcal{K}^{-}(\mathbf{X})$. However, it is not computable because $\widehat{\mathcal{K}}_{S}$ is not computable.

Arno Pauly and Hideki Tsuiki

To obtain a faithful \mathbb{T}^{ω} -representation of $\mathcal{K}^{-}(\mathbf{X})$ from a proper computable dyadic subbase, we consider a bigger domain and construct an algorithm to restrict the limits to \widehat{L}_{S} using the fact that $p \in \widehat{K}_{S}$ is semi-decidable. (Omit the details.)

This is a tree-like set representing the set $\{0, 1/3\}$. Therefore, we need to assign a \mathbb{T}^{ω} sequence with one \bot .

Theorem

If S is a proper computable dyadic subbase of a CCCMS X, then X has a faithful \mathbb{T}^{ω} -representation.

Arno Pauly and Hideki Tsuiki

 $^{\omega}$ -representations of compact sets through

Outline of the proof

```
Computably compact computable metric space
                        JL
Existence of proper computable dyadic subbases
                        1
             Domain representation
                        ╢
       Compact sets are tree-like subsets
                        \Downarrow (Expanding tree-like sets as trees)
 Cantor space (Compact sets are binary trees)
             Faithful representation
```

Construction of a proper computable dyadic subbase

Theorem: Every separable metric space has a proper dyadic subbase.

- Proved in [Ohta, Yamada, T 2011] for a special case and in [Ohta, Yamada, T 2013] for the full case.
- Tsukamoto gave an elegant proof in [Tsukamoto 2017]. (In that paper, he also proved that every locally compact separable metric space has a strongly proper dyadic subbase.) We effectized his proof to obtain

Theorem

Every CCCMS has a computable proper dyadic subbase.

Theorem (main theorem)

If **X** is a CCCMS, then $\mathcal{K}^-(\mathbf{X})$ has a faithful \mathbb{T}^{ω} -representation.

Thank you very much.