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Represented Space

@ Represented space X = (X, dx):
» Ox : partial surjective function from A to X. (A= {0,1}* N¥, ..).
» Lift the computability notion in A to X.
f
X——=Y
5XT 5YT f is computable if 3 computable F.
A—F A
e Sierpinski space S = {T, L}. (S,ds) is a represented space.
» 0s(0¥) =L
> 5§(0"1p) =T
@ Plotkin’s T = {0,1, L}. (T,dr) is a represented space.
» op(0¥) = L
> §7(02"1p) = 0 f
> 5’11‘(02"+11P) -1 T« : T«
o (T, drw) is a represented space. 6T“’T 6T“T
. . . F
@ We have a derived computability notion on T%. {0,1}* —— {0,1}¥
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T“-Represented Space

o T“-Represented space (X, v):

» 1) . partial surjective function from T to X.
» Lift the computability notion in T% to X.
> Note that we consider multi-valued realizers on T¥.

X :f; Y
wa wyT

F
I — |
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T“-Represented Space

o T“-Represented space (X, v):

» 1) . partial surjective function from T to X.
» Lift the computability notion in T% to X.
> Note that we consider multi-valued realizers on T¥.

X :f; Y
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T“-Represented Space

o T“-Represented space (X, v):

» 1) . partial surjective function from T to X.
» Lift the computability notion in T% to X.
> Note that we consider multi-valued realizers on T¥.

X :f; Y
UJXT . wyT
I —
5@ 5@

{0,1}» —C&  {0,1}*

@ Why T“-represented space?
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Why T“-represented space?

e (T“, <) has an order structure. It is a Scott domain!
» We can expect a natural representation of a space with order.

1w
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Why T*“-represented space?

e (T“, <) has an order structure. It is a Scott domain!

» We can expect a natural representation of a space with order.
e Contains {0,1}“ as top elements.

» Sub-structure of the space can be represented with {0, 1}.
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Why T*“-represented space?

e (T“, <) has an order structure. It is a Scott domain!

» We can expect a natural representation of a space with order.
e Contains {0,1}“ as top elements.

» Sub-structure of the space can be represented with {0, 1}.

@ Direct manipulation of a sequence of partial information.

Arno Pauly and Hideki Tsuiki T -representations of compact sets through ¢ Domains 2018

4/26



Why T*“-represented space?

e (T“, <) has an order structure. It is a Scott domain!

» We can expect a natural representation of a space with order.
e Contains {0,1}“ as top elements.

» Sub-structure of the space can be represented with {0, 1}.

@ Direct manipulation of a sequence of partial information.
@ Can count the number of bottoms.

» Some information of the space can be reflected into the number of
bottoms.

» Every n-dimensional second countable metrizable space can be

injectively represented in T% so that each name contains up to n copies
of L [T 2002].

“——

2.1

1Y 11011 L|1
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T“-sequences as unspecified points.

Suppose that 6 :C {0,1}* — X is a representation.
e Each infinite sequence (in dom(d)) specifies a point.
» 0101101... —» x € X
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T“-sequences as unspecified points.

Suppose that 6 :C {0,1}* — X is a representation.

e Each infinite sequence (in dom(d)) specifies a point.
» 0101101... —» x € X

@ Each T-sequence specifies an unspecified point.
§(010001...),

5(010011...)
5(011001...)
§(011011...)

» 01101l1...—

b

(If all of them are in dom(d))

)
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T“-sequences as unspecified points.

Suppose that 6 :C {0,1}* — X is a representation.
e Each infinite sequence (in dom(d)) specifies a point.
» 0101101... —» x € X
@ Each T-sequence specifies an unspecified point.
§(010001...),

5(010011...), .
» 01L10Ll1...— 5(011001...). (' If all of them are in dom(d))

§(011011...)

e Can we use it as a T“-representation of P(X)?
» No. (Cardinarity).
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T“-sequences as unspecified points.

Suppose that 6 :C {0,1}* — X is a representation.

e Each infinite sequence (in dom(d)) specifies a point.

» 0101101... » x e X

@ Each T-sequence specifies an unspecified point.
§(010001...),
5(010011...),
§(011001...),
§(011011...)
e Can we use it as a T“-representation of P(X)?

» No. (Cardinarity).

» 0110L1...— (If all of them are in dom(d))

e Can we use it as a T“-representation of the set K~ (X) of non-empty
compact subsets of X?
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T“-sequences as unspecified points.

Suppose that 6 :C {0,1}* — X is a representation.

e Each infinite sequence (in dom(d)) specifies a point.

» 0101101... » x e X

@ Each T-sequence specifies an unspecified point.
§(010001...),
5(010011...),
§(011001...),
§(011011...)
e Can we use it as a T“-representation of P(X)?

» No. (Cardinarity).

e Can we use it as a T“-representation of the set K~ (X) of non-empty
compact subsets of X?

» 0110L1...— (If all of them are in dom(d))

» Yes, for X a computably compact computable metric space.
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Matching representation.
Let 6 :C {0,1}* — X and ¢ :C T% — K~ (X) be (T*-)representations.
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Matching representation.

Let 6 :C {0,1}* — X and ¢ :C T% — K~ (X) be (T*-)representations.
We define as follows.

@ They match if {g | p =g €{0,1}*} C dom(9) (Vp € dom(v)) and
v(p) ={d(q) | p = q € {0,1}*}.

Arno Pauly and Hideki Tsuiki T“ -representations of compact sets through ¢ Domains 2018 6/26



Matching representation.

Let 6 :C {0,1}* — X and ¢ :C T% — K~ (X) be (T*-)representations.
We define as follows.
e They match if {g| p < g€ {0,1}*} C dom(d) (Vp € dom(%))) and
¥(p)=1{d(q) | p = q € {0,1}*}.
@ 1) is hereditary if the restriction of v to 1p is a representation of

K= (¢(p)) for p € dom(v)).
» Then, |A] =1 < #{L € p} for the case A =1(p) is a finite set.
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Matching representation.

Let § :C {0,1}¥ — X and ¢ :C T¥ — K~ (X) be (T“-)representations.
We define as follows.
e They match if {g | p < g€ {0,1}*} C dom(d) (Vp € dom(z))) and
P(p) =1{(q) | p = q€{0,1}*}.
@ 1) is hereditary if the restriction of v to 1p is a representation of

K~ (4(p)) for p € dom(y).
» Then, |A] =1 < #{L € p} for the case A =1)(p) is a finite set.

e ¢ is minimal if [¢(p)] — 1 = #{L € p} when |¢)(p)| is finite,
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Matching representation.

Let § :C {0,1}¥ — X and ¢ :C T¥ — K~ (X) be (T“-)representations.
We define as follows.
e They match if {g | p < g€ {0,1}*} C dom(d) (Vp € dom(z))) and
P(p) =1{(q) | p = q€{0,1}*}.
@ 1) is hereditary if the restriction of v to 1p is a representation of

K~ (6(p)) for p € dom(y).
» Then, |A] =1 < #{L € p} for the case A =1)(p) is a finite set.
e ¢ is minimal if [¢(p)] — 1 = #{L € p} when |¢)(p)| is finite,
@ 1 is faithful if it is hereditary and minimal.
> If 4 is faithful, then (8,v) match for 6 = |9 1}w.
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Matching representation.

Let § :C {0,1}¥ — X and ¢ :C T¥ — K~ (X) be (T“-)representations.
We define as follows.
e They match if {g | p < g€ {0,1}*} C dom(é) (Vp € dom(z))) and
P(p) =1{(q) | p= g€ {0,1}*}.
@ 1) is hereditary if the restriction of v to 1p is a representation of
K= (4(p)) for p € dom(s)).
» Then, |A| — 1 < #{L € p} for the case A =1(p) is a finite set.
e ¢ is minimal if [(p)| — 1 = #{L € p} when |[¢)(p)] is finite,
o ¢ is faithful if it is hereditary and minimal.
> If 4 is faithful, then (8,v) match for 6 = |9 13w

Theorem (Main Theorem)

If X is a CCCMS (computably compact computable metric space), then
K~ (X) admits a faithful T“-representation.

Notel: Applications in finite closed choice and Weihrauch reducibility.
Note2: Compact = closed in a compact metric space. K(X) < A(X).
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Outline of the proof

Computably compact computable metric space

4

Existence of proper computable dyadic subbases

4

Domain representation
U
Compact sets are tree-like subsets
|} (Expanding tree-like sets as trees)
Cantor space (Compact sets are binary trees)

Y

Faithful representation
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Outline of the proof

Computably compact computable metric space

4

Existence of proper computable dyadic subbases

4

Domain representation

4

Compact sets are tree-like subsets
|} (Expanding tree-like sets as trees)
Cantor space (Compact sets are binary trees)

s

Faithful representation
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Closed subsets of Cantor space as binary trees.

o A binary tree (7)) is a prefix-closed subset of {0, 1}*.
o Infinite paths of T € T form a closed subset [T] of {0,1}~.

..0..1..0..1 .0

\oA \

000 001 010 110 111
\ / \ \ /

00 1 1 1

0 0 1
\0/ \1/

\/

€
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Closed subsets of Cantor space as binary trees.

o A binary tree (7)) is a prefix-closed subset of {0, 1}*.

o Infinite paths of T € T form a closed subset [T] of {0,1}~.

@ A pruned tree (PT) is a tree T such that w € T implies
dveTwCv.

@ [] is a one to one correspondence between PT and A({0,1}*)
(Closed subsets of {0,1}%).

o Consider T“-representation of pruned trees.

..0..1..0..1 .0

YERY \

000 001 010 110 111
\ / \ \ /

0 1 1 1

0 0 0 1
\0/ \1/

\/

€
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T%-representation dp7 : T — PT of Pruned Trees
Let n(p) for p € {0,1}* be the enumeration of {0,1}* as blue.
For a pruned tree T,

SEH(T)(n(p)) =

L (both Op,1p e T)
0 (OpeT)
1 (1peT)

Oorl (p¢ T(causes redundancy))
Neither do not happen for a pruned tree.

..0..1..0..1 ...0
\/ \/
000 001 110
N/ \
11
0Q3\\\ 4 5 - 6
0 1
1 2
L0 1T |L|*|*x|O|L|L|*]|*x|*x]*x|0]=x
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
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Computing dp7-name incrementally

Let A be the tree {0,1}*\ (T ptU T p1 U...).
Given a sequence p1, p2, . .

compute a dp7-name of Prune(A).

..0..1..0..1.0..1..0..1...0...1..0...1...0...1..0...1

\/oN NN

\ / \ /
003\ 01,
/

\/oN
N/

\/
000 001 010 011 100 101 110 111
N/

10 11
N~ °

01 12
‘\\\\\\\\\\\ 6 6//////,////

\/

L

1

L

L

uE

L

L)L) L
2 3 4
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Computing dp7-name incrementally

Let A be the tree {0,1}*\ (T ptU T p1 U...).
Given a sequence pi, p2,... € {0,1}* (as a {0,1}*-name of a closed set)

compute a dp7-name of Prune(A).

..0..1..0..1.0...1..0..1..0...1..0...1 .0 .1..0...1

NN N NN N
000 001 010 011 100 101 110

\ / \ / \ /
3\ / 4 5\ s’\. © Detected 1T 11 ¢ A.

L)L) L]lL]0]0
8 9 10 11 12 13 14

w| -
INQE
~| -
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Computing dp7-name incrementally

Let A be the tree {0,1}*\ (T ptU T p1 U...).
Given a sequence pi, p2,... € {0,1}* (as a {0,1}*-name of a closed set)

compute a dp7-name of Prune(A).

20..1..0.1..0..1..0..1.0.1..0.1.0 1 0. 1
\oNS NS N N
000 001 010 011 (100 101 ] \ '
N/ N\ /
00 01
o0 ¢ 5\ 9\ Q Detected 1 11 & A.

@ Detected

01\6/

LyLj0o) L] L OjL)jLjL|L 1100
0 1.2 3 4 5 6 7 8 9 10 11 12 13 14
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Computing dp7-name incrementally

Let A be the tree {0,1}*\ (T ptU T p1 U...).

Given a sequence pi, p2,... € {0,1}* (as a {0,1}*-name of a closed set)

compute a dp7-name of Prune(A).

..0..1..0..1..0...1..0..1 .01 .01 .01 .0 .0

\/oNS NN
000 001 010 011 11
00 0]_ 10
N N 5><’ © Detected 1 11 ¢ A.
01\ 1 , @ Detected |
e X © Detected 1 101 & A.
0

O|L|O|L]|L OjL)jLjL|L 01010
0 1.2 3 4 5 6 7 8 9 10 11 12 13 14
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The number of bottoms

o Let PT be the T*-represented space (PT,dpT).

e 07 :({0,1}") =T, p1,p2,... =~ {0, 1}*\ (T mU T ppU...)isa
({0, 1}*)“-representation. 7 = (T, d7).

@ The above computation shows that Prune : T — PT is computable.

@ Similarly, one can show that its multi-valued inverse is computable.

o []: 7T — A({0,1}¥) is computable with computable multi-valued
inverse.

e Pruneo[]7!is a computable isomorphism between KC({0,1}*) =
A({0,1}*) and PT, and obtain a T%-representation of K({0,1}*).

o It is a hereditary representation.

e If Ais a finite set of cardinarity n, only n — 1 number of L is left
(minimal).

K~({0,1}*) has a faithful T-representation.
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Outline of the proof

Computably compact computable metric space

4

Existence of proper computable dyadic subbases

4

Domain representation
I
Compact sets are tree-like subsets
|l (Expanding tree-like sets as trees)
Cantor space (Compact sets are binary trees)

4

Faithful representation
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Unit Interval as Retract of the limit-set of a DAG

o Signed digit representation of the unit interval.

@ Three-branching, two-merging DAG (Directed Acyclic Graph).

o Infinite paths (obtained as the ideal completion) are representing the
unit interval.

@ Note: three essentially different paths represent 0.

.\ /. .\ /.

—1 0 13 1)2 1
NI/ANNNNTN/AN
o 7 X0 o1 ol o A
[—1,0] [—1/2, 1/2] [0, 1]
>1\ o 1
[_17 1]
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Unit Interval as Retract of the limit-set of a DAG

o Signed digit representation of the unit interval.

@ Three-branching, two-merging DAG (Directed Acyclic Graph).

o Infinite paths (obtained as the ideal completion) are representing the
unit interval.

@ Note: three essentially different paths represent 0.

o Tree-like subsets (Vp # ¢ € A(3qg € A g <! p)) of this DAG are
representing closed subsets.

.\ /. .\ /.

—1 0 13 1)2 1
ANANANANIANFANVAN
I N P S N VR T N
[-1,0] [-1/2,1/2] [0, 1]
>1\ lo 1
[_171]
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Expansion of a DAG to a tree

SAANAT - T - e

NAYAYY ARV
N

Binar Pruned
Tree-like set — Tree — Y Binary
Tree
Tree
1 oprT
’]I‘w

Question: Which space can be represented as the limit-set of a Scott
domain that is obtained as the ideal completion of this kind of DAG?
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Outline of the proof

Computably compact computable metric space

4

Existence of proper computable dyadic subbases

4

Domain representation

4

Compact sets are tree-like subsets
|} (Expanding tree-like sets as trees)
Cantor space (Compact sets are binary trees)

4

Faithful representation
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Gray code [Gianantonio:1999],[T:2002]

G : [-1,1] — T¥: Injective T*-representation of the unit interval.

o o o o
—1 \0/ 1/3  1/2 1
Te e e e e e e e e @ e e @ e e
NI/ NI/ NI/ NP2 N1 N/ NS
. ° . L—1/4,1/4][0,1/2] ° .
N \ N | P
[-1,0] 12120 [o.1]
/
[-1.1]
010« 110% 1010¥1110%
o L10% 1@ 1110% 10

000 0011 001 0110 011 0111 010 1100 110 1111 111 1110 101 1011 100
NI/ NI/ NI/ NI/ NI/ NI/ NI/

00 0Ll1 01 110 11 111 10

R N N
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How is it constructed?

Sno = {x [ G(x)(n) =0}, Sn1 = {x| G(x)(n) =1},

'
S S S S S S SO
| — 1 — 1 '

53,0, 53,1 | : —_—
520,521 |
S10,511 !
50,0, 50,1 !
-1 —1)2 6 1)2 'i,
010¥ 110 1010¥1110%
\ / \ /
0¥ 110% 19 1110¥ 10¥

000 0011 001 0110 011 0111 010 1100 110 11i1 111 1110 101 10l1 100
NI/ NI/ NI/ NI/ NI/ NI/ \\/
00 OJ_l 01 110 11 111

S ‘ / \‘/

\/
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Dyadic subbase — Generalization of Gray-code.

Definition ([T 2004])

A dyadic subbase over a set X is amap S : N x {0,1} — P(X) such that
SnoN Sp1 =0 for every n € N and
{(n,i) | x € Spit ={(n,i) |y € Spi} = x=yforx,y € X.

° Sn’J_ =X \ (5,,,0 U 5,,71).

0 (X € Sn,O)a
o ps(x)(M)=1{ 1 (x€Su), ( h
1 (X € 5,,71_).

@ ps: X — T : embedding into T%.

o Xs = (X,¢s") is an admissible
T“-represented space.

@ We say that S is a computable dyadic {_ )
subbase of a represented space X if
Xs is computably isomorphic to X.

n-th coordinate
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Two kinds of information.

@ Each finite sequence p € T* specifies

S(P) = ﬂ S, ,p(n)

nedom(p)
g(p) = ﬂ (X \ Sml—p(n)) = m (Sn,p(n) U Sn,L)
nedom(p) nedom(p)

@) @

A dyadic subbase S is proper if S(p) = cl1S(p) for every p € T*.

Definition
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Proper dyadic subbase
Recall that S is proper means S(p) = cl S(p) for every p € T*.

@ Gray-code is a proper dyadic subbase.

@ S,0 and S, 1 are exteriors of each other. (The case p = 1"1.)
Sp, 1 is the common boundary.

Sp.1
@ Sp,1 and S; | do not to case p = 00/)/—\
@ Si0 (@ S10
bad good—
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Computability notions of S(p) and cl S(p)

Two computability notions A(X) (closed) and V(X) (overt) for closed
sets.
o 5(p) € A(X) because 5(p) = X\ (Unedom(p) Sn1-p(n))-
» Ac AX) & A€ € O(X).
» Representation by negative information.
o cl5(p) € V(X) because cl S(p) = cl((\cdom(p) Sn.p(n))-
» A€ V(X) is represented by enumeration of {U | UN A # (}.
> Representation by positive information.

o If Sis a proper dyadic subbase, then S(p) = clS(p) € V(X) A K(X).

o {S(p)| p € T*} is a closed base which consists of overt and closed
sets.
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Let S be a dyadic subbase of a space X. Define

Ks = {pn | 3x € X ps(x) = p,n € N}
55 = the ideal completion of Rs (CT%), Zs = 55 \ Rs.

Theorem (T, Tsukamoto,2015)

Suppose that S is a proper computable dyadic subbase of a CCCMS X.

We have something like

010% 110¢ 1010“1110%
\ / \ /
v 110% 1“ 1.110% 10%

00000110010.11001101.11010 1100110 1111 111 1110 101 1011 100

NI/ NI/ NI/ NI/ NI/ NI/ NI/ % o :
Ks : Finite branching DAG.
00 0L1 01 110 11 111 10 Ds : Scott Domain

\ N \
Ve 11 N 1 < min(Ls): Homeomorphic to X

0
\ \ / Ls — X: Computable retract
€

By expanding it into tree, we have a T“-representation of the set I~ (X).
However, it is not computable because Ks is not computable.
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To obtain a faithful T«-representation of X~ (X) from a proper
computable dyadic subbase, we consider a bigger domain and construct an
algorithm to restrict the limits to Ls using the fact that p € Ks is

semi-decidable. (Omit the details.)

0101t10%
\/
l1o« 1«

010 L1100 110 1111 111

/ NN \ N This is a tree-like set

110 111 representing  the  set

/ \ ‘ / \‘ {0,1/3}. Therefore,
\ | / we need to assign a T%

€ sequence with one L.

If' S is a proper computable dyadic subbase of a CCCMS X, then X has a
faithful T -representation.
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Outline of the proof

Computably compact computable metric space

4

Existence of proper computable dyadic subbases

4

Domain representation

4

Compact sets are tree-like subsets
|} (Expanding tree-like sets as trees)
Cantor space (Compact sets are binary trees)

4

Faithful representation

Arno Pauly and Hideki Tsuiki T“ -representations of compact sets through ¢ Domains 2018 25/26



Construction of a proper computable dyadic subbase

Theorem: Every separable metric space has a proper dyadic subbase.
@ Proved in [Ohta, Yamada, T 2011] for a special case and in [Ohta,
Yamada, T 2013] for the full case.

e Tsukamoto gave an elegant proof in [Tsukamoto 2017]. (In that
paper, he also proved that every locally compact separable metric
space has a strongly proper dyadic subbase.) We effectized his proof
to obtain

Every CCCMS has a computable proper dyadic subbase.

Theorem (main theorem)
If X is a CCCMS, then K~ (X) has a faithful T“-representation.

Thank you very much.
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