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Axioms for λ-Calculus

Constants:        none 
Variables:   x, y, z, ... 
Terms:     expressions built up from variables using a binary  
                           application operation  M(N) and a variable-binding  
                           operation of λ-abstraction (λx.M).
Substitutions:  M[N/x] is defined for each variable x by replacing all    
                           free occurrences of x in M by a copy of N  — provided 
                           that no free variables in N get captured by a variable  
                           binder in M or confused with other free variables. 
Axioms:            (provided the substitutions are defined) 
                     (α)               (λx.M) = (λy.M[y/x]), y not free in M.

         (β)   (λx.M)(N) = M[N/x]
         (η)   (λx.f(x)) = f

Question: Would a better notation have been (x ↦ M) ? 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Some Tools for Models

( 1 ) Countably based algebraic lattices (with tops).

(2) Dcpos, esp. topologically closed subsets of (1) (no tops).

(3) Various kinds of PCAs (partial combinatory algebras). 

Notes: (a) Both in (1) and (2) the partial orderings have natural  
   topologies. 
  (b) For (3), Kleene’s K2 has a good topology also. 
  (c) Both in (1) and (2) there are universal models. 
  (d) Both universal models retract to their own continuous  
     function spaces. 
  (e) Both universal models (and K2) have a good notions of  
   computability. 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The Powerset of the Integers


    


Note 1:  The open subsets of P(ℕ) in this topology are exactly those 
collections where a set belongs iff some finite subset belongs.


Note 2: The continuous functions F:P(ℕ) ⟶  P(ℕ) are those  
where for all X ∈ P(ℕ) and all finite E ∈ P(ℕ) we have 
E ⊆ F(X) iff there  is a finite D ⊆ X with E ⊆ F(D).

Note 3:  P(ℕ) can be shown to be universal for countably  
based algebraic lattices in several senses.  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The powerset  P(ℕ)  = { X | X⊆ℕ }becomes a T0-topological space  
with the sets of the form { X⊆ℕ | E ⊆ X } as a neighborhood base, 

where E is taken as a finite set.



Embedding Spaces as Subspaces 


   

Reference:  P. Alexandroff.  Zur Theorie der topologischen Raume.
      C.R. (Doklady) Acad. Sci. URSS, vol. 11 (1936), pp, 55-58. 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Theorem. Every countably based T0-space X is  
homeomorphic to a subspace of P(ℕ).

Proof Sketch:  Let a subbasis for the topology of X be { O n | n ∈ ℕ } . 
Define  ε:X  ￫ P(ℕ) by  ε(x) = { n ∈ ℕ |  x ∈ O n }. 

By the T0-axiom, this mapping is one-one onto a subspace of P(ℕ). 
Check first that the inverse image of opens of P(ℕ) are open in X. 

Notice next that ε(O n) = ε(X) ∩ { S ∈  P(ℕ) | n ∈ S } . 
Hence, the image of an open of X is an open of the subspace. 

Therefore, ε is a homeomorphism to a subspace. Q.E.D.



Extending Continuous Functions


Note: We could say that P is an injective space.

Note: Continuous functions between subspaces of P(ℕ) 
come from the continuous function on P(ℕ) into itself.

For proofs see:

Reference: Martín Hötzel Escardó. Properly injective spaces 
and function spaces. Topology and its Applications, 

vol. 89 (1998), pp. 75-120. 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Theorem. If a T0-space X is a subspace of a space Y, then 

any continuous function F:X  ￫ P(ℕ) can be extended to 

a continuous function G:Y  ￫ P(ℕ).



Embedding Algebraic Lattices 


Comment: Finite elements are often called compact. 

Comment: This is the topological embedding and only preserves 
intersections and directed unions. 

Reference: Compact element. Wikipedia, the free encyclopedia. 
Note: This entry is incomplete, as is Algebraic Lattice.  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Theorem. Every countably based algebraic lattice L is  
isomorphic to a sub-algebraic lattice of P(ℕ).

Proof Sketch:  Let the non-zero finite elements of L be { e n | n ∈ ℕ } . 
Define  ε:L ￫ P(ℕ) by  ε(x) = { n ∈ ℕ |  e n ≦ x  }. 

By the properties of algebraic lattices, this mapping is  
one-one onto a sublattice of P(ℕ).



The Space of Continuous Functions


Corollary: P(ℕ) can become a λ-calculus model.  

�8

Theorem. The space of continuous functions between two 
countably based algebraic lattices is again a countably based  

algebraic lattice under the point-wise ordering.

Theorem. The countably based algebraic lattices and 
continuous functions form a cartesian closed category.

Theorem. The space Cont[ P(ℕ), P(ℕ) ] of continuous functions  
from P(ℕ) into itself is a continuous retract of P(ℕ).



Enumeration Operators


Note:  X* consists of all the sequence numbers representing 

all the finite subsets of the set X.


Definition. An enumeration operator  F:P(ℕ) ⟶  P(ℕ)
is a mapping determined by a given subset F ⊆ ℕ by the formula: 

F(X) = { m | ∃n ∈ X*.(n,m) ∈ F }

Exercise: Show that the enumeration operators on P(ℕ)
are exactly the continuous functions.  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˙ Definitions. (1) Pairing: (n,m) = 2n(2m+1)-1.     
(2)  Sequence numbers:〈〉= 0 and 

  〈n0,n1,...,nk-1,nk〉= (〈n0,n1,...,nk-1〉, nk)+1. 
(3) Sets: set(0) = ∅ and  set((n,m)+1)= set(n)∪{ m }. 

(4) Kleene star: X* = { n | set(n) ⊆ X }, for sets X ⊆ ℕ.



The λ-Calculus Model


Note 1: Application is a continuous function of two variables. 

Note 2: If F(X) is continuous, then λX.F(X) is the largest set  F 

  where for all sets T,  we have F(T)= F(T).

Note 3: If the function  F(X,Y) is continuous, then the abstraction term 

λX.F(X,Y) is continuous in the other variable. 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Application:  F(X) = { m | ∃n ∈ X*.(n,m) ∈ F } 

Abstraction: λX.[..X..] = { (n,m) | m  ∈ [.. set(n)..] },

            where X ↦ [..X..] is  continuous.

Warning: Generally we only have F ⊆ λX.F(X).



Some Historical Background
The model could easily have been defined in 1957!!


John R. Myhill:  Born: 11 August 1923, Birmingham, UK 
Died: 15 February 1987, Buffalo, NY 

     

John Shepherdson: Born: 7 June 1926, Huddersfield, UK 
Died: 8 January 2015, Bristol, UK 

      

Hartley Rogers, Jr.: Born:  6 July, 1926, Buffalo, NY 
Died: 17 July, 2015, Waltham, MA 

   
•  John Myhill and John C. Shepherdson, Effective operations on partial recursive functions, 
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 1 (1955), 
pp. 310-317.
    

•  Richard M. Friedberg and Hartley Rogers Jr., Reducibility and completeness for sets of 
integers, Mathematical Logic Quarterly, vol. 5 (1959), pp. 117-125.   Some earlier  results 
are presented in an abstract in The Journal of Symbolic Logic, vol. 22 (1957), p. 107.
    
    

•  Hartley Rogers, Jr., Theory of Recursive Functions and Effective Computability, 
McGraw-Hill, 1967, xix + 482 pp. 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Pairing and Relations


Note: Under this definition we have P(ℕ) = P(ℕ) × P(ℕ) 
in the category of topological spaces. From time to time


we may write Pair(X)(Y)=(X,Y)to save space. 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Recall. Pairing functions for sets in P(ℕ) can be 
defined by these enumeration operators: 

    

Pair(X)(Y)={2n|n ∈ X } ∪ {2m+1|m ∈ Y }
    

Fst(Z)={n|2n ∈ Z }  and  Snd(Z)={m|2m+1 ∈ Z }.

Convention. Every subset of P(ℕ) can be regarded as  
a binary relation, where for all A ⊆ P(ℕ)  
we write X	A	Y iff Pair(X)(Y) ∈ A.



Partial Equivalences as Types


Note: Think of a type as a quotient space of a subspace of P(ℕ). 

Taking quotients is a very common mathematical construction. 

It is, however, better NOT to pass to using equivalence classes 

as points in order to make it easier to employ our λ-calculus.  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Definition. By a type over P(ℕ) we shall understand 

a partial equivalence relation A ⊆ P(ℕ)  
where, for all X,Y,Z ∈ P(ℕ), we have 

• X	A	Y implies Y	A	X, and
• X	A	Y and Y	A	Z imply X	A	Z.

We also write X:A iff X	A	X,
and say that A types X.



The Category of Types


Exercise: Show (A  ￫ B) is a partial equivalence relation. 

Exercise: Show F:A  ￫ B	implies ∀X:A. F(X):B. 

Exercise: Show  (λX.λY.X) : A ￫ (B ￫ A)  for any types A and B. 
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Definition. The exponentiation of types A,B ⊆ P(ℕ) 
is defined as that relation where 

F(A  ￫ B)G iff ∀X,Y. X A	Y implies F(X)	B	G(Y).

Theorem: The types form a category expanding 
the category of subspaces.



Products and Sums of Types


Note: Types form a (bi) cartesian closed category — whereas 

the topological category of subspaces does not.  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   Definition. The product of two types A,B ⊆ P(ℕ) 
is defined as that relation where 

X(A × B)Y iff Fst(X)A	Fst(Y) and  Snd(X)	B	Snd(Y).

Exercise: The product of two types is again a type, and we have 

X:(A × B) iff Fst(X):A and Snd(X):B	.

Definition. The sum of two types A,B ⊆ P(ℕ) 
is defined as that relation where X(A  + B)Y iff

either ∃X0,Y0[X0A	Y0 & X = ({0},X0) & Y = ({0},Y0)]
 or                            ∃X1,Y1[X1B	Y1 & X = ({1},X1) & Y = ({1},Y1)].

Exercise: The sum of two types is again a type, and we have 

X:(A + B) iff either Fst(X) = {0} & Snd(X): A 
              or   Fst(X) = {1} & Snd(X): B.



Dependent Products & Sums

With simple logical definitions in P(P(ℕ)), one can study 

dependent type theory with the kind of rules 

used by Martin-Löf and de Bruijn.


But note that the λ-terms are type free.


With further simple logical definitions in P(P(P(ℕ))),  
one can study functors between types


as well as systems of types.


And this also leads to . . .  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Polymorphic Types


Exercise: Show that λX.λY.(X,Y): ∩(A ￫(B￫(A × B)))
                  A , B	

Note:  Any monotone function on types has a least & greatest fixed point.	
Exercise: Show Scott	= ∩(A ￫((Scott ￫ A)￫A)) types these numerals.
                          A 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Theorem. The class of all types is a complete lattice,  
because it is closed under arbitrary intersections.

Definition. The Scott numerals (1963) in λ-calculus are: 

0 = λX.λF.X , 1 = λX.λF.F(0), 2 = λX.λF.F(1), etc., and 
succ = λY.λX.λF.F(Y), and 

pred = λY.Y(0)(λX.X).



Some Closing Observations

• Enumeration operators over P(ℕ) model λ-calculus and


are characterized by a simple topology.

• The large category of types over P(ℕ) inherits much topology.


• λ-calculus over P(ℕ) plus the arithmetic combinators

provides a basic notion of computability.


• The category of types over P(ℕ) thus also inherits 

aspects of computability.


• Polymorphism for types then gives an abstract foundation

for defining inductive and co-inductive data structures.


• Propositions-as-types then will enforce using constructive logic.
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The model can in this way function as a laboratory for

exploring these ideas in a very concrete fashion —


which is also open to using Computer-Based Theorem Proving.


