LOOKING BACKWARD – LOOKING FORWARD

Appeal to Future: Make the Models Do More Work!

Dana S. Scott

University Professor Emeritus Carnegie Mellon University Visiting Scholar UC Berkeley, Mathematics

Domains XIII Oxford, 7–8 July 2018 FLoC 2018: Federated Logic Conference 2018

Axioms for λ -Calculus

Constants:	none
Variables:	x, y, z,
Terms:	expressions built up from variables using a binary application operation $M(N)$ and a variable-binding operation of λ - abstraction ($\lambda x \cdot M$).
Substitutions	 M[N/x] is defined for each variable x by replacing all free occurrences of x in M by a copy of N — provided that no free variables in N get captured by a variable binder in M or confused with other free variables.
Axioms:	(provided the substitutions are defined)
((($\lambda x.M$) = ($\lambda y.M[y/x]$), y not free in M.
($(\lambda x.M)(N) = M[N/x]$
(1	$(\lambda x.f(x)) = f$

Question: Would a better notation have been $(x \mapsto M)$?

Some Tools for Models

- (1) Countably based algebraic lattices (with tops).
- (2) Dcpos, esp. topologically closed subsets of (1) (no tops).
- (3) Various kinds of PCAs (partial combinatory algebras).
- **Notes: (a)** Both in (1) and (2) the partial orderings have natural topologies.
 - (b) For (3), Kleene's K₂ has a good topology also.
 - (c) Both in (1) and (2) there are *universal models*.
 - (d) Both universal models retract to their own continuous *function spaces.*
 - (e) Both universal models (and K₂) have a good notions of computability.

The Powerset of the Integers

The powerset $\mathcal{P}(\mathbb{N}) = \{ x \mid x \subseteq \mathbb{N} \}$ becomes a *T*₀-topological space with the sets of the form $\{ x \subseteq \mathbb{N} \mid E \subseteq x \}$ as a *neighborhood base*, where E is taken as a *finite* set.

Note 1: The **open** subsets of $\mathcal{P}(\mathbb{N})$ in this topology are exactly those collections where a set belongs iff some finite subset belongs.

- Note 2: The continuous functions $F: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ are those where for all $X \in \mathcal{P}(\mathbb{N})$ and all finite $E \in \mathcal{P}(\mathbb{N})$ we have $E \subseteq F(X)$ iff there is a finite $D \subseteq X$ with $E \subseteq F(D)$.
 - **Note 3:** $\mathcal{P}(\mathbb{N})$ can be shown to be *universal* for countably based algebraic lattices in several senses.

Embedding Spaces as Subspaces

Theorem. Every countably based T_0 -space \mathcal{X} is homeomorphic to a *subspace* of $\mathcal{P}(\mathbb{N})$.

Proof Sketch: Let a subbasis for the topology of \mathcal{X} be $\{ \mathcal{O}_n \mid n \in \mathbb{N} \}$. Define $\varepsilon : \mathcal{X} \to \mathcal{P}(\mathbb{N})$ by $\varepsilon(x) = \{ n \in \mathbb{N} \mid x \in \mathcal{O}_n \}$. By the T₀-axiom, this mapping is one-one onto a subspace of $\mathcal{P}(\mathbb{N})$. Check first that the *inverse image* of opens of $\mathcal{P}(\mathbb{N})$ are open in \mathcal{X} . Notice next that $\varepsilon(\mathcal{O}_n) = \varepsilon(\mathcal{X}) \cap \{ S \in \mathcal{P}(\mathbb{N}) \mid n \in S \}$. Hence, the *image* of an open of \mathcal{X} is an open of the subspace. Therefore, ε is a homeomorphism to a subspace. Q.E.D.

Reference: P. Alexandroff. *Zur Theorie der topologischen Raume*. C.R. (Doklady) Acad. Sci. URSS, vol. 11 (1936), pp, 55-58.

Extending Continuous Functions

Theorem. If a T₀-space \mathcal{X} is a subspace of a space \mathcal{Y} , then any continuous function $\mathbf{F}: \mathcal{X} \to \mathcal{P}(\mathbb{N})$ can be extended to a continuous function $\mathbf{G}: \mathcal{Y} \to \mathcal{P}(\mathbb{N})$.

Note: We could say that P is an *injective* space.

Note: Continuous functions **between** subspaces of $\mathcal{P}(\mathbb{N})$ come from the continuous function on $\mathcal{P}(\mathbb{N})$ into itself.

For proofs see:

Reference: Martín Hötzel Escardó. *Properly injective spaces and function spaces*. Topology and its Applications, vol. 89 (1998), pp. 75-120.

Embedding Algebraic Lattices

Theorem. Every countably based algebraic lattice \mathcal{L} is isomorphic to a *sub-algebraic lattice* of $\mathcal{P}(\mathbb{N})$.

Proof Sketch: Let the non-zero finite elements of \mathcal{L} be { $e_n \mid n \in \mathbb{N}$ }. Define $\varepsilon: \mathcal{L} \to \mathcal{P}(\mathbb{N})$ by $\varepsilon(x) = \{ n \in \mathbb{N} \mid e_n \leq x \}$. By the properties of algebraic lattices, this mapping is one-one onto a sublattice of $\mathcal{P}(\mathbb{N})$.

Comment: Finite elements are often called compact.

Comment: This is the topological embedding and only preserves intersections and directed unions.

Reference: Compact element. Wikipedia, the free encyclopedia. **Note:** This entry is incomplete, as is Algebraic Lattice.

The Space of Continuous Functions

Theorem. The space of continuous functions between two countably based algebraic lattices is again a countably based algebraic lattice under the point-wise ordering.

Theorem. The countably based algebraic lattices and continuous functions form a *cartesian closed category*.

Theorem. The space **Cont**[$\mathcal{P}(\mathbb{N}), \mathcal{P}(\mathbb{N})$] of continuous functions from $\mathcal{P}(\mathbb{N})$ into itself is a *continuous retract* of $\mathcal{P}(\mathbb{N})$.

Corollary: $\mathcal{P}(\mathbb{N})$ can become a λ -calculus model.

Enumeration Operators

•Definitions. (1) Pairing: $(n,m) = 2^n(2m+1)-1$. (2) Sequence numbers: $\langle \rangle = 0$ and $\langle n_0, n_1, \dots, n_{k-1}, n_k \rangle = (\langle n_0, n_1, \dots, n_{k-1} \rangle, n_k)+1$. (3) Sets: set(0) = \emptyset and set((n,m)+1) = set(n) \cup {m}. (4) Kleene star: $X^* = \{n \mid set(n) \subseteq X\}$, for sets $X \subseteq \mathbb{N}$.

Note: X* consists of all the sequence numbers representing all the finite subsets of the set X.

Definition. An enumeration operator $F:\mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ is a mapping determined by a given subset $F \subseteq \mathbb{N}$ by the formula: $F(X) = \{ m \mid \exists n \in X^*. (n,m) \in F \}$

Exercise: Show that the enumeration operators on $\mathcal{P}(\mathbb{N})$ are **exactly** the continuous functions.

The λ -Calculus Model

Application: $F(X) = \{ m \mid \exists n \in X^* \cdot (n,m) \in F \}$ Abstraction: $\lambda X \cdot [\ldots X \ldots] = \{ (n,m) \mid m \in [\ldots set(n) \ldots] \},$ where $X \mapsto [\ldots X \ldots]$ is continuous.

Note 1: Application is a continuous function of *two* variables.

Note 2: If F(X) is continuous, then $\lambda X \cdot F(X)$ is the *largest* set F where for all sets T, we have F(T) = F(T).

Warning: Generally we only have $F \subseteq \lambda X \cdot F(X)$.

Note 3: If the function F(X,Y) is continuous, then the abstraction term $\lambda X \cdot F(X,Y)$ is continuous in the **other variable**.

Some Historical Background

The model could easily have been defined in 1957!!

John R. Myhill: Born: 11 August 1923, Birmingham, UK Died: 15 February 1987, Buffalo, NY

John Shepherdson: Born: 7 June 1926, Huddersfield, UK Died: 8 January 2015, Bristol, UK

Hartley Rogers, Jr.: Born: 6 July, 1926, Buffalo, NY Died: 17 July, 2015, Waltham, MA

• John Myhill and John C. Shepherdson, *Effective operations on partial recursive functions*, **Zeitschrift für Mathematische Logik und Grundlagen der Mathematik**, vol. 1 (1955), pp. 310-317.

• Richard M. Friedberg and Hartley Rogers Jr., *Reducibility and completeness for sets of integers*, **Mathematical Logic Quarterly**, vol. 5 (1959), pp. 117-125. Some earlier results are presented in an abstract in **The Journal of Symbolic Logic**, vol. 22 (1957), p. 107.

• Hartley Rogers, Jr., **Theory of Recursive Functions and Effective Computability**, McGraw-Hill, 1967, xix + 482 pp.

Pairing and Relations

Recall. Pairing functions for sets in $\mathcal{P}(\mathbb{N})$ can be defined by these enumeration operators: $Pair(X)(Y) = \{2n \mid n \in X\} \cup \{2m+1 \mid m \in Y\}$ $Fst(Z) = \{n \mid 2n \in Z\}$ and $Snd(Z) = \{m \mid 2m+1 \in Z\}$.

Note: Under this definition we have $\mathcal{P}(\mathbb{N}) = \mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N})$ in the category of topological spaces. From time to time we may write Pair(X)(Y) = (X, Y) to save space.

Convention. Every subset of $\mathcal{P}(\mathbb{N})$ can be regarded as a *binary relation*, where for all $\mathcal{A} \subseteq \mathcal{P}(\mathbb{N})$ we write $X \ \mathcal{A} Y$ iff $Pair(X)(Y) \in \mathcal{A}$.

Partial Equivalences as Types

Definition. By a type over P(N) we shall understand
a partial equivalence relation A ⊆ P(N)
where, for all X, Y, Z ∈ P(N), we have
X A Y implies Y A X, and
X A Y and Y A Z imply X A Z.
We also write X: A iff X A X, and say that A types X.

Note: Think of a type as a quotient space of a subspace of $\mathcal{P}(\mathbb{N})$. Taking quotients is a very common mathematical construction. It is, however, better NOT to pass to using equivalence classes as points in order to make it easier to employ our λ -calculus.

The Category of Types

Definition. The *exponentiation* of types $\mathcal{A}, \mathcal{B} \subseteq \mathcal{P}(\mathbb{N})$ is defined as that relation where $F(\mathcal{A} \rightarrow \mathcal{B})G$ iff $\forall X, Y$. $X \mathcal{A} Y$ implies $F(X) \mathcal{B} G(Y)$.

Exercise: Show $(\mathcal{A} \rightarrow \mathcal{B})$ is a partial equivalence relation.

Exercise: Show $F: \mathcal{A} \to \mathcal{B}$ implies $\forall x: \mathcal{A}$. $F(x): \mathcal{B}$.

Exercise: Show $(\lambda x \cdot \lambda y \cdot x) : \mathcal{A} \to (\mathcal{B} \to \mathcal{A})$ for any types \mathcal{A} and \mathcal{B} .

Theorem: The types form a *category* expanding the category of subspaces.

Products and Sums of Types

Definition. The *product* of two types $\mathcal{A}, \mathcal{B} \subseteq \mathcal{P}(\mathbb{N})$ is defined as that relation where $X(\mathcal{A} \times \mathcal{B})Y$ iff $Fst(X)\mathcal{A} Fst(Y)$ and $Snd(X) \mathcal{B} Snd(Y)$.

Exercise: The product of two types is again a type, and we have

 $X: (\mathcal{A} \times \mathcal{B})$ iff $Fst(X): \mathcal{A}$ and $Snd(X): \mathcal{B}$.

Definition. The *sum* of two types $\mathcal{A}, \mathcal{B} \subseteq \mathcal{P}(\mathbb{N})$ is defined as that relation where $X(\mathcal{A} + \mathcal{B})Y$ iff either $\exists X_0, Y_0[X_0\mathcal{A}Y_0 \& X = (\{0\}, X_0) \& Y = (\{0\}, Y_0)]$ or $\exists X_1, Y_1[X_1\mathcal{B}Y_1 \& X = (\{1\}, X_1) \& Y = (\{1\}, Y_1)].$

Exercise: The sum of two types is again a type, and we have

 $X: (\mathcal{A} + \mathcal{B}) \text{ iff either } Fst(X) = \{0\} \& Snd(X): \mathcal{A}$ or $Fst(X) = \{1\} \& Snd(X): \mathcal{B}.$

Note: Types form a (bi) cartesian closed category — whereas the topological category of subspaces does not.

Dependent Products & Sums

With simple logical definitions in $\mathcal{P}(\mathcal{P}(\mathbb{N}))$, one can study dependent type theory with the kind of rules used by Martin-Löf and de Bruijn.

But note that the λ -terms are type free.

With further simple logical definitions in $\mathcal{P}(\mathcal{P}(\mathcal{P}(\mathbb{N})))$, one can study functors between types as well as systems of types.

And this also leads to . . .

Polymorphic Types

Theorem. The class of all types is a *complete lattice*, because it is closed under *arbitrary intersections*.

Exercise: Show that $\lambda X \cdot \lambda Y \cdot (X, Y) : \bigcap_{\mathcal{A}, \mathcal{B}} (\mathcal{A} \to (\mathcal{B} \to (\mathcal{A} \times \mathcal{B})))$

Definition. The Scott numerals (1963) in λ -calculus are: $\underline{0} = \lambda X \cdot \lambda F \cdot X$, $\underline{1} = \lambda X \cdot \lambda F \cdot F(\underline{0})$, $\underline{2} = \lambda X \cdot \lambda F \cdot F(\underline{1})$, etc., and <u>succ</u> = $\lambda Y \cdot \lambda X \cdot \lambda F \cdot F(Y)$, and <u>pred</u> = $\lambda Y \cdot Y(\underline{0}) (\lambda X \cdot X)$.

Note: Any *monotone* function on types has a *least* & *greatest fixed point*. **Exercise:** Show $\mathscr{G}catt = \bigcap_{\mathcal{A}} (\mathscr{A} \rightarrow ((\mathscr{G}catt \rightarrow \mathcal{A}) \rightarrow \mathcal{A}))$ types these numerals.

Some Closing Observations

- Enumeration operators over $\mathcal{P}(\mathbb{N})$ model λ -calculus and are characterized by a simple topology.
- The large category of types over $\mathcal{P}(\mathbb{N})$ inherits much topology.
 - λ -calculus over $\mathcal{P}(\mathbb{N})$ plus the arithmetic combinators provides a basic notion of computability.
 - The category of types over $\mathcal{P}(\mathbb{N})$ thus also inherits aspects of computability.
 - Polymorphism for types then gives an abstract foundation for defining inductive and co-inductive data structures.
- Propositions-as-types then will enforce using constructive logic.

The model can in this way function as a laboratory for exploring these ideas in a very concrete fashion which is also open to using Computer-Based Theorem Proving.