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The Idea

We follow two threads in Dana Scott’s mathematics to study
frames in a different light.

» Injectivity is an important idea, as Dana reminded us
yesterday vis a vis P(N).

» Relational reasoning can get at functional behavior (via, for
example, approximable maps).

» These permit us to situate frames in larger ambient
categories of relations in which constructions arise from
the combination of injectivity and relational reasoning.

» In particular, the assembly of a frame comes about as
being isomorphic to a sublocale Q(L) of the frame of all
“weakening” relations a given frame.

» We prove this by showing directly that Q(L) is such a
sublocale and has the universal property of the assembly.
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Injectivity and Frames

From independent discoveries (Bruns and Lakser; Horn and
Kimura),

» Frames are precisely the injective (meet) semilattices.
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Injectivity and Frames

From independent discoveries (Bruns and Lakser; Horn and
Kimura),
» Frames are precisely the injective (meet) semilattices.
» Simply knowing this does not get us very far in studying
frames qua frames.
» But semilattice maps between injective semilattices
correspond dually to frame relations (defined below).

» So the general study of frames can be approached via the
study of them simply as injective semilattices.
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First step: Frame Relations

» A semilattice map h: M — L between two frames can be
viewed “dually” as the relation R, C L x M defined by

x < h(y)
X Rny
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First step: Frame Relations

» A semilattice map h: M — L between two frames can be
viewed “dually” as the relation R, C L x M defined by
x < h(y)
X Rny
» Ry is closed under weakening: x < x’ R, y’ < y implies

X Rpy.
» Itis a subframe of L x M.

» Any such relation, called a frame relation, determines a
semilattice homomorphism.
» The category Frm of frames and frame relations is

opposite to the full subcategory of SL consisting of
injective semilattices. [Note: id; is the order relation on L.]
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Frame homomorphisms and sub-objects

» Suppose R: L+ M and R.: M & L are frame relations
satisfying

id, CR;R. and R, RCidy
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Frame homomorphisms and sub-objects

» Suppose R: L+ M and R.: M & L are frame relations
satisfying

id, € R; R, and R R Cidy
» Then there is a frame homomorphism f: L — M so that

xRy <= f(x)<y and
yR.x = y <f(x)

Call R a frame map in this case.
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Frame homomorphisms and sub-objects

» Suppose R: L+ M and R.: M & L are frame relations
satisfying
id, € R; R, and R.;R Cidy

» Then there is a frame homomorphism f: L — M so that

xRy <= f(x)<y and
Yy Rix <= y <f(x)

Call R a frame map in this case.

» Conversely, every frame homomorphism determines an
adjoint pair of frame relations.
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Extremal epis

Lemma

Let R: L3 M be a frame map.

1. R is extremal epi iff R,; R = idy
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Extremal epis

Lemma
Let R: L3 M be a frame map.

1. R is extremal epi iff R.; R = idy.

2. ThesetSg={ac L|Vb,bR;R.a < b<a}is
obviously a sub-semilattice, and as such it is injective
(hence is a frame).

3. Sgrisclosed under \ andVac LVbe S,a— b e S;.

4. Any S C L satisfying (3) [the sublocale conditions] induces
an extremal epi from L to S by restricting <, to L x S.
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Frame pre-congruences

The observations above show that the endo frame relations ¢
satisfying

1. id; C ¢; and

2. ;9 < ¢
correspond exactly to extremal epis from L (sublocales on L).
And

Q(L) = reflexive, transitive frame relations on L

ordered by inclusion is clearly a complete semilattice because
meet is intersection.
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Frame pre-congruences

Lemma L
For any frame L, Q(L) is a sublocale of Pos(L, L) — the
completely distributive lattice of all weakening relations.

Proof.

As already noted, Q(L) is closed under arbitrary intersections.
Suppose R: L ¢ L is a weakening relation and ¢ € Q(L). The
Heyting arrow in Pos(L, L) by given by

x(R— o)y iff Yw,zeLWRz=wAXpyVzZ

So itis easy to check that (R — ¢) € Q(L). O
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Special relations

» For w € L, define vy, vw € Q(L) by
x<yvw

X Yw y

X Uy Y
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x<yvw

Special relations
» For w € L, define vy, vw € Q(L) by

and WAXSY
XYw Y X Uy Y
» Also define well-inside by
wAXx <0

1<yvw
X <Ly
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Special relations
» For w € L, define vy, vw € Q(L) by

x<yvw and WAX<Yy
XYwYy
» Also define well-inside by

X Uy Y
WAX<O0

1<yvw
X <Ly .
» Now I': L 9+ Q(L) defined by

wlhe iff v Co
satisfies

rr,=id;

T g'<L
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Special relations
» For w € L, define vy, vw € Q(L) by
XSYVW g WAXSY
XYw Y X Uy Y
» Also define well-inside by
WAX<O0 1<yvw
X <Ly .
» Now I': L 9+ Q(L) defined by

whe it W Co

satisfies
rr,=id;
r*; r g'<L

» Hence T is a frame map, and ~, and v,, are complements
in Q(L).
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Finally

Theorem
For any frame map R: L+ M if R.; R C<y then there is a
unique frame map R': Q(L) & M so that

R=T;R'
Proof.
Define gy € Q(M) and A: Q(M) - M by
XANy*<w ¢ C Bw
X Bwy PAw

Then checking that Rt = Q(R); A satisfies the requirements is a
simple calculation. O]
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Closing summary

Viewing frames as the injective semilattices:

» Frame relations are the relational counterparts of
semilattice homomorphisms

» Frame maps are adjoint frame relations, and correspond to
frame homomorphisms.

» The pre-congruences on a frame are the reflexive and
transitive frame relations.

» These form a frame Q(L) that directly has the universal
property of the frame of all congruences on L.
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