Extending Stone Duality to Relations

M. Andrew Moshier¹ Achim Jung² Alexander Kurz³ July 2018 Chapman University University of Birmingham University of Leicester

Extending Stone Duality to Relations

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● のへで

The Basic Motivation

Investigate

 Stone duality (more generally, natural duality) is nice for algebra.

The Basic Motivation

Investigate

 Stone duality (more generally, natural duality) is nice for algebra.

 For topology, it's not so hot. The spaces that arise are 0 dimensional, so are pretty nearly discrete.

2/12

The Basic Motivation

Investigate

- Stone duality (more generally, natural duality) is nice for algebra.
- For topology, it's not so hot. The spaces that arise are 0 dimensional, so are pretty nearly discrete.
- One would like to have natural duality for compact Hausdorff structures extending familiar dualities on Stone structures.

The Basic Motivation

Investigate

- Stone duality (more generally, natural duality) is nice for algebra.
- For topology, it's not so hot. The spaces that arise are 0 dimensional, so are pretty nearly discrete.
- One would like to have natural duality for compact Hausdorff structures extending familiar dualities on Stone structures.
- Clearly, this will require us to add something to the algebraic side.

< □ > < □ > < Ξ > < Ξ > < Ξ > < Ξ < ⊙ < ⊙

The Basic Motivation

Investigate

- Stone duality (more generally, natural duality) is nice for algebra.
- For topology, it's not so hot. The spaces that arise are 0 dimensional, so are pretty nearly discrete.
- One would like to have natural duality for compact Hausdorff structures extending familiar dualities on Stone structures.
- Clearly, this will require us to add something to the algebraic side.
- We know what to do in specific cases: Proximity lattices (Smyth, Jung/Sünderhauf), proximity lattices with "negation" (M).

< □ > < □ > < Ξ > < Ξ > < Ξ > < Ξ < ⊙ < ⊙

First step: Relations

.

 Proximity lattices are distributive lattices equipped with particular sorts of relations.

First step: Relations

.

The dual structures (compact pospaces) are obtained as certain quotients of the underlying dual Priestley spaces (a Stone space is a Priestley space with discrete order).

ヘロア ヘロア ヘビア ヘビア

First step: Relations

- The dual structures (compact pospaces) are obtained as certain quotients of the underlying dual Priestley spaces (a Stone space is a Priestley space with discrete order).
- To generalize this, we need to understand how relations generally behave under natural dualities.

Relations Three Ways

Spans: Span

For posets X and Y, a span from X to Y is a pair of monotonic functions

$$X \xleftarrow{p} P \xrightarrow{q} Y$$

4/12

Relations Three Ways

Spans: Span

For posets X and Y, a span from X to Y is a pair of monotonic functions

$$X \xleftarrow{p} P \xrightarrow{q} Y$$

 Horizontal composition is defined by commas (the order analogue of pullback).

Relations Three Ways

Spans: Span

.

For posets X and Y, a span from X to Y is a pair of monotonic functions

$$X \xleftarrow{p} P \xrightarrow{q} Y$$

- Horizontal composition is defined by commas (the order analogue of pullback).
- ► A 2-morphism from span $X \xleftarrow{p} R \xrightarrow{q} Y$ to $X \xleftarrow{p'} R' \xrightarrow{q'} Y$ is a monotonic function $f: R \to R'$ making the obvious triangles commute.

◆□ > ◆□ > ◆臣 > ◆臣 > □ = ○○へ⊙

Relations Three ways

Cospans: Cospan

For posets X and Y, a cospan rom X to Y is a pair of morphisms

$$X \stackrel{j}{\longrightarrow} C \stackrel{k}{\longleftarrow} Y$$

Relations Three ways

Cospans: Cospan

For posets X and Y, a cospan rom X to Y is a pair of morphisms

$$X \stackrel{j}{\longrightarrow} C \stackrel{k}{\longleftarrow} Y$$

 Horizontal composition is defined by co-commas (the ordered version of pushouts).

.

<ロ> <回> <回> <回> < 回> < 回> < 三</p>

Relations Three ways

Cospans: Cospan

For posets X and Y, a cospan rom X to Y is a pair of morphisms

$$X \stackrel{j}{\longrightarrow} C \stackrel{k}{\longleftarrow} Y$$

 Horizontal composition is defined by co-commas (the ordered version of pushouts).

.

► A 2-morphism from cospan $X \xrightarrow{j} C \xleftarrow{k} Y$ to cospan $X \xrightarrow{j'} C' \xleftarrow{k'} Y$ is a monotonic function $f: C \to C'$ making the obvious triangles commute.

< □ > < □ > < Ξ > < Ξ > < Ξ > < Ξ < ⊙ < ⊙

Relations three ways

Weakening relations: WRel

► For posets X and Y, a weakening relation is a monotonic map $R: X^{\partial} \times Y \to 2$. Equivalently, identifying with the co-kernel $R = \{(x, y) \mid R(x, y) = 1\}$: $\underline{x \leq_X x' \quad x' R y' \quad y' \leq_X y}$

x R y

6/12

Relations three ways

Weakening relations: WRel

For posets X and Y, a weakening relation is a monotonic map R: X[∂] × Y → 2. Equivalently, identifying with the co-kernel R = {(x, y) | R(x, y) = 1}: x ≤_X x' x' R y' y' ≤_X y

 Horizontal composition is defined by the usual relation product.

Relations three ways

Weakening relations: WRel

► For posets X and Y, a weakening relation is a monotonic map $R: X^{\partial} \times Y \rightarrow 2$. Equivalently, identifying with the co-kernel $R = \{(x, y) \mid R(x, y) = 1\}$:

$$\frac{x \leq_X x' \quad x' \mathrel{R} y' \quad y' \leq_X y}{x \mathrel{R} y}$$

- Horizontal composition is defined by the usual relation product.
- A 2-morphism between weakening relations is simply comparison point-wise.

How these are related?

Weakening relations, spans and cospans form 2-categories. The 2 cells are related via the following functors.

- $R \in WRel$, determines
 - a span graph(R) by restricting projections
 - a cospan collage(R) by taking the least order on X ⊎ Y containing ≤_X, ≤_Y and R

7/12

How these are related?

Weakening relations, spans and cospans form 2-categories. The 2 cells are related via the following functors.

• $X \xleftarrow{p} R \xrightarrow{q} Y$ determines

- ▶ a weakening relation $\operatorname{rel}_{s}(p,q)$ by $(x, y) \in \operatorname{rel}_{s}(p,q)$ iff $\exists r \in R, x \leq p(r)$ and $q(r) \leq y$
- ▶ a cospan cocomma(*p*, *q*) by taking the cocomma of (*p*, *q*).

How these are related?

Weakening relations, spans and cospans form 2-categories. The 2 cells are related via the following functors.

- $X \xleftarrow{p} R \xrightarrow{q} Y$ determines
 - ▶ a weakening relation $\operatorname{rel}_{s}(p,q)$ by $(x, y) \in \operatorname{rel}_{s}(p,q)$ iff $\exists r \in R, x \leq p(r)$ and $q(r) \leq y$
 - ► a cospan cocomma(p, q) by taking the cocomma of (p, q).
- $X \xrightarrow{j} C \xleftarrow{k} Y$ determines
 - a weakening relation $\operatorname{rel}_c(j,k)$ by (x,y) iff $j(x) \le k(y)$
 - a span comma(j, k) by taking the comma of (j, k).

How are these related?

We have three 2-categories: Span, Cospan and WRel. We already described the hom categories: Span(X, Y), Cospan(X, Y) and WRel(X, Y).

- Composition of spans is defined by a comma
- Composition of cospans is defined by a cocomma
- Composition of weakening relations is defined by relational product: *R*; *S*(*x*, *y*) = ∨_{*y*∈*Y*} *R*(*x*, *y*) ∧ *S*(*y*, *z*).

How are these related?

The constructions rel_s , rel_c , graph, collage, comma, cocomma are 2-functors:

- $\operatorname{rel}_{s}(X, Y) \dashv \operatorname{graph}(X, Y);$
- ▶ $\operatorname{rel}_{s}(X, Y) \circ \operatorname{graph}(X, Y) \cong \operatorname{WRel}(X, Y)$
- $\operatorname{rel}_c(X, Y) \dashv \operatorname{collage}(X, Y);$
- ▶ $\operatorname{rel}_c(X, Y) \circ \operatorname{collage}(X, Y) \cong \operatorname{WRel}(X, Y);$
- $\operatorname{cocomma}(X, Y) \dashv \operatorname{comma}(X, Y)$
- comma(X, Y) \cong graph(X, Y) \circ rel_c(X, Y).
- $\operatorname{cocomma}(X, Y) \cong \operatorname{collage}(X, Y) \circ \operatorname{rel}_{s}(X, Y).$

How are these related?

The constructions rel_s , rel_c , graph, collage, comma, cocomma are 2-functors:

- $\operatorname{rel}_{s}(X, Y) \dashv \operatorname{graph}(X, Y);$
- ▶ $\operatorname{rel}_{s}(X, Y) \circ \operatorname{graph}(X, Y) \cong \operatorname{WRel}(X, Y)$
- $\operatorname{rel}_c(X, Y) \dashv \operatorname{collage}(X, Y);$
- ▶ $\operatorname{rel}_c(X, Y) \circ \operatorname{collage}(X, Y) \cong \operatorname{WRel}(X, Y);$
- $\operatorname{cocomma}(X, Y) \dashv \operatorname{comma}(X, Y)$
- comma(X, Y) \cong graph(X, Y) \circ rel_c(X, Y).
- $\operatorname{cocomma}(X, Y) \cong \operatorname{collage}(X, Y) \circ \operatorname{rel}_{s}(X, Y).$
- These facts hold analogously in PoSpace, the category of topological spaces with closed partial orders with respect to continuous monotonic functions.

Extending to algebras and topological structures

Suppose \mathcal{A} is a class of ordered algebras (algebras with a partial order in which operations are monotone). Let $\overline{\mathcal{A}}$ denote the category of \mathcal{A} -algebra spans in \mathcal{A} with weakening poset reducts.

For example, DLat is the category of bounded distributive lattices with morphisms that are relations satisfying:

- $x \le x' R y' \le y$ implies x R y
- ► 0 *R* 0
- ▶ 1 *R* 1
- $x_0 R y_0$ and $x_1 y_1$ implies $x_0 \wedge x_1 R y_0 \wedge y_1$
- $x_0 R y_0$ and $x_1 R y_1$ implies $x_0 \lor x_1 R y_{\lor} y_1$.

Main point

Theorem

- ► *DL* is (dually equivalent to Priestley.
- Pos is dually equivalent to Stone(DLat)
- SLat is dually equivalent to Stone(SLat).

Proof idea:

► A span $X \xleftarrow{p} R \xrightarrow{q} Y$ in any of the categories mentioned here dualizes to $2^X \xrightarrow{2^p} 2^R \xleftarrow{2^q} 2^Y$ in Priestley.

Main point

Theorem

- ► *DL* is (dually equivalent to Priestley.
- Pos is dually equivalent to Stone(DLat)
- SLat is dually equivalent to Stone(SLat).

Proof idea:

- ► A span $X \xleftarrow{p} R \xrightarrow{q} Y$ in any of the categories mentioned here dualizes to $2^X \xrightarrow{2^p} 2^R \xleftarrow{2^q} 2^Y$ in Priestley.
- But this transfer preserves the weakening property in each case.

Main point

Theorem

- ► *DL* is (dually equivalent to Priestley.
- Pos is dually equivalent to Stone(DLat)
- SLat is dually equivalent to Stone(SLat).

Proof idea:

- ► A span $X \stackrel{p}{\longleftarrow} R \stackrel{q}{\longrightarrow} Y$ in any of the categories mentioned here dualizes to $2^X \stackrel{2^p}{\longrightarrow} 2^R \stackrel{2^q}{\longleftarrow} 2^Y$ in Priestley.
- But this transfer preserves the weakening property in each case.
- The correspondence of spans and cospans allows the cospan in the dual category to be tranfered into a span.

So far, we are still in the realm of Stone spaces.

Extending Stone Duality to Relations

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

- So far, we are still in the realm of Stone spaces.
- By splitting idempotents (below identity) in the algebraic relational categories, we dualize to obtain suitable (pre)congruences in the corresponding topological categories.

◆□ > ◆□ > ◆臣 > ◆臣 > □ = ○○へ⊙

- So far, we are still in the realm of Stone spaces.
- By splitting idempotents (below identity) in the algebraic relational categories, we dualize to obtain suitable (pre)congruences in the corresponding topological categories.
- Quotients of these are compact Hausdorff.

< □ > < □ > < Ξ > < Ξ > < Ξ > < Ξ < ⊙ < ⊙

- So far, we are still in the realm of Stone spaces.
- By splitting idempotents (below identity) in the algebraic relational categories, we dualize to obtain suitable (pre)congruences in the corresponding topological categories.
- Quotients of these are compact Hausdorff.
- We expect to be able to construct "natural" dualities for quasivarieties of ordered compact Hausdorff algebras in this way.

- So far, we are still in the realm of Stone spaces.
- By splitting idempotents (below identity) in the algebraic relational categories, we dualize to obtain suitable (pre)congruences in the corresponding topological categories.
- Quotients of these are compact Hausdorff.
- We expect to be able to construct "natural" dualities for quasivarieties of ordered compact Hausdorff algebras in this way.

Happy Birthday Dana. Thanks Klaus.