A logical view of complex analytic maps

Mehrdad Maleki
(joint work with Abbas Edalat)

IPM

July 7, 2018
Stone Duality

- Classical Stone duality:
 \(\text{Boolean Algebras}^{op} \cong \text{Stone Spaces} \).

- Johnstone: \textbf{Sober spaces} \(\cong \text{Spatial locals} \).

- Smyth, Abramsky, Vickers:
 Open sets as observational properties of programs.

- Abramsky 1991: \textit{Domain Theory in Logical Form},
 Denotational Semantics \(\cong \text{Geometric Logic} \).
Geometric Logic

- Open sets of a topological space as propositions or semi-decidable properties.

- \(\Omega(X) \) the lattice of open sets of \(X \).

- Open set \(a \in \Omega(X) \) defines a proposition \(P_a \), with axioms:

 (I) If \(a \subseteq b \) then \(P_a \vdash P_b \).

 (II) If \(S \) is a family of open sets then \(P_{\cup S} \vdash \bigvee_{a \in S} P_a \).

 (III) If \(S \) is a finite family of open sets then \(\bigwedge_{a \in S} P_a \vdash P_{\cap S} \).

- \(\land \emptyset = \text{true}, \lor \emptyset = \text{false} \) then \(P_{\emptyset} \vdash \text{false} \) and \(P_X \vdash \text{true} \).

- \(x \in X \) is a model, \(x \models P_a \) iff \(x \in a \).
Predicate transformer

Dijkstra weakest precondition

- P a program.

- Weakest-precondition of P is a function mapping any postcondition O to a precondition A.

- $wp(P, O) = A$.
Dijkstra weakest precondition

- \mathbf{P} a program.
- Weakest-precondition of \mathbf{P} is a function mapping any postcondition \mathbf{O} to a precondition \mathbf{A}.
- $\text{wp}(\mathbf{P}, \mathbf{O}) = \mathbf{A}$.

Predicate transformer
Predicate transformer

Dijkstra weakest precondition

- **P** a program.

- Weakest-precondition of **P** is a function mapping any postcondition **O** to a precondition **A**.

- \(\text{wp}(P, O) = A \).
Predicate transformer

Dijkstra weakest precondition

- P a program.

- Weakest-precondition of P is a function mapping any postcondition O to a precondition A.

- $wp(P, O) = A$.

$x \models A \quad P \quad y \models O$
Differentiation in logical form

- Can we represent derivative of an analytic map $f: U \subseteq \mathbb{C} \rightarrow \mathbb{C}$ by Stone duality?

- Equivalently: Given the predicate transformer representing the map, can we represent the derivative of an analytic map as a predicate transformer?
Differentiation in logical form

Can we represent derivative of an analytic map \(f: U \subseteq \mathbb{C} \to \mathbb{C} \) by Stone duality?

Equivalently: Given the predicate transformer representing the map, can we represent the derivative of an analytic map as a predicate transformer?

\[
wp(f, O) = f^{-1}(O).
\]

\[
wp(f', O) = ?.
\]
Differentiation in logical form

- Can we represent derivative of an analytic map $f: U \subseteq \mathbb{C} \to \mathbb{C}$ by Stone duality?

- Equivalently: Given the predicate transformer representing the map, can we represent the derivative of an analytic map as a predicate transformer?

- $wp(f, O) = f^{-1}(O)$.

- $wp(f', O) = ?$.

Differentiation in logical form

- Can we represent derivative of an analytic map $f: U \subseteq \mathbb{C} \rightarrow \mathbb{C}$ by Stone duality?

- Equivalently: Given the predicate transformer representing the map, can we represent the derivative of an analytic map as a predicate transformer?

- $wp(f, O) = f^{-1}(O)$.

- $wp(f', O) = ?$.
Generalized Lipschitz constant (Edalat 2008)

- \(f : U \subseteq \mathbb{C} \rightarrow \mathbb{C} \) a continuous function.
- \(b \) a nonempty convex and compact set in \(\mathbb{C} \).
- \(a \) an open subset of \(U \).
- \(f \) has \textit{set valued Lipschitz constant} \(b \) in \(a \) if:
 \[
 \forall x, y \in a, x \neq y. \quad \frac{f(x) - f(y)}{x - y} \in b
 \]
- Allowing \(b \) any compact interval we have all the local differential properties of \(f \).
- \(\delta(b \chi_a) \), the \textit{tie of} \(a \) \textit{with} \(b \) \textit{collection of all function} \(f \) \textit{which have Lipschitz constant} \(b \) \textit{in} \(a \).
Collecting all the local differential properties captured by ties we obtain the \(L \)-derivative:

\[
\mathcal{L}f : U \subseteq \mathbb{C} \rightarrow \mathbb{C}(\mathbb{C})
\]

\[
\mathcal{L}f(x) = \bigcap \{ b \mid f \in \delta(b \chi_a), x \in a \}
\]

\(\mathcal{L}f \) is Scott continuous function.
Way-below relation in lattice of open sets

- In \((\Omega(\mathbb{C}), \subseteq) \) we have \(O_1 \ll O_2 \) iff \(\overline{O_1} \subseteq O_2 \).

- \(\Box O = \{ C \in \mathbb{C} | C \subseteq O \} \): basic open set for Scott topology for \(\mathbb{C} \), where \(O \subseteq \mathbb{C} \) is open set.

 way-below relation in \(\Omega(\mathbb{C}) \): \(\Box O_1 \ll \Box O_2 \) iff \(O_1 \ll O_2 \).
Localic approximable mapping

We capture f by approximable mapping A_f which satisfies:

$$a A_f b \text{ iff } a \ll f^{-1}(b)$$
Stably locally compact spaces

- X is stably locally compact if:
 1. $\Omega(X)$ is a distributive continuous lattice.
 2. For $O, O_1, O_2 \in \Omega(X)$, $O \ll O_1 \land O_2$ if $O \ll O_1, O_2$.

- $C, C(C)$ are stably locally compact.

- SLC the category of stably locally compact spaces with continuous functions.

- A semi-strong proximity lattice is a lattice with an additional strong ordering satisfies some axioms.

- PL is the category of semi-strong proximity lattices with approximable mappings.
Equivalence of **PL** and **SLC** via functors **A** and **G**

- **A : SLC → PL.**
- **On objects:** $A(X)$ be the basis of X closed under finite intersection.
- **On morphisms:** $A(f) = A_f$.

PL = **SLC** via **A** & **G** (Jung & Sünderhauf 1996).
Equivalence of **PL** and **SLC** via functors **A** and **G**

- **A : SLC → PL.**
- **On objects:** \(A(X)\) be the basis of \(X\) closed under finite intersection.
- **On morphisms:** \(A(f) = A_f\).

- **G : PL → SLC.**
- **On objects:** \(G(B) = \text{Spec}(B)\), all prime filters of \(B\).
- **On morphisms:** \(G_R(F) = \{b_2 \in B_2 : \exists b_1 \in F, b_1 \mathrel{R} b_2\}\), for \(R : B_1 \to B_2\).
Equivalence of \textbf{PL} and \textbf{SLC} via functors A and G

- $A : \textbf{SLC} \to \textbf{PL}$.
 - **On objects**: $A(X)$ be the basis of X closed under finite intersection.
 - **On morphisms**: $A(f) = A_f$.

- $G : \textbf{PL} \to \textbf{SLC}$.
 - **On objects**: $G(B) = \text{Spec}(B)$, all prime filters of B.
 - **On morphisms**: $G_R(F) = \{ b_2 \in B_2 : \exists b_1 \in F. b_1 R b_2 \}$, for $R : B_1 \to B_2$.

- $\textbf{PL} \cong \textbf{SLC}$ via A & G (Jung & Sünderhauf 1996).
Logical representation of \mathbb{C} and $\mathbb{C}(\mathbb{C})$

Semi-strong proximity lattice of \mathbb{C}

- $B_{\mathbb{C}}^0$ basis of \mathbb{C} consisting rational convex open polytopes.
- $B_{\mathbb{C}}$ consisting of finite join of elements of $B_{\mathbb{C}}^0$.
- \prec is way-below relation in the lattice of open sets of \mathbb{C} restricted to $B_{\mathbb{C}}$.
- $(B_{\mathbb{C}}, \prec)$ is a semi-strong proximity lattice.
- $\text{Spec}(B_{\mathbb{C}}) \cong \mathbb{C}$.

Similarly, $B_{\mathbb{C}}^0(\mathbb{C})$ basis of Scott topology of $\mathbb{C}(\mathbb{C})$ consisting rational convex open polytopes.

$\text{Spec}(B_{\mathbb{C}}^0(\mathbb{C})) \cong \mathbb{C}(\mathbb{C})$.
Logical representation of \mathbb{C} and $\mathbb{C}(\mathbb{C})$

Semi-strong proximity lattice of \mathbb{C}

- B_0^0 basis of \mathbb{C} consisting rational convex open polytopes.
- $B_\mathbb{C}$ consisting of finite join of elements of B_0^0.
- \prec is way-below relation in the lattice of open sets of \mathbb{C} restricted to $B_\mathbb{C}$.
- $(B_\mathbb{C}, \prec)$ is a semi-strong proximity lattice.
- $\text{Spec}(B_\mathbb{C}) \cong \mathbb{C}$.

Semi-strong proximity lattice of $\mathbb{C}(\mathbb{C})$

- Similarly, B_0^0 basis of Scott topology of $\mathbb{C}(\mathbb{C})$ consisting $\ll a$ for $a \in B_0^0$.
- $(B_{\mathbb{C}(\mathbb{C})}, \prec)$ semi-strong proximity lattice generated by B_0^0.
- $\text{Spec}(B_{\mathbb{C}(\mathbb{C})}) \cong \mathbb{C}(\mathbb{C})$.
Knot of approximable mappings

- Knot of approximable mapping dual to tie of a function.
- $R : B_U \rightarrow B_C$ an approximable mapping.
- $O \in B_C^0$, $a \in B_U^0$.
- $a, O \neq 0, 1$, the bottom and top elements of the lattice.
- R has Lipschitzian constant O in a, denoted $R \in \Delta(a, O)$ if,

$$\forall a_1 \forall a_2 \in B_U^0. \ a_1, a_2 \prec a \ & \overline{a_1} \cap \overline{a_2} = \emptyset$$

$$\exists a_1' \exists a_2' \in B_C^0. \ a_1 R a_1' \ & \ a_2 R a_2' \ & \ a_1' - a_2' \prec O \cdot (a_1 - a_2).$$
Strong tie: \(f \in \delta_s(b \chi a) \), if \(\exists a'. a \ll_{\Omega(U)} a' \) & \(\exists b'. b \ll_{C(C)} b' \) such that \(f \in \delta(b' \chi a') \).

Strong knot: \(R \in \Delta_s(a, O) \), if \(\exists a'. a \prec a' \) & \(\exists O'. O' \prec O \) such that \(R \in \Delta(a', O') \).
Stone duality of strong ties and strong knots

- **Strong tie:** \(f \in \delta_s(b \chi a) \), if \(\exists a'. \ a \prec_{\Omega(U)} a' \text{ and } \exists b'. \ b \prec_{C(C)} b' \) such that \(f \in \delta(b' \chi a') \).

- **Strong knot:** \(R \in \Delta_s(a, O) \), if \(\exists a'. \ a \prec a' \text{ and } \exists O'. \ O' \prec O \) such that \(R \in \Delta(a', O') \).

Theorem:

- \(R \in \Delta_s(a, O) \) iff \(G_R \in \delta_s(\overline{O} \chi a) \).

- \(f \in \delta_s(b \chi a) \) iff \(A_f \in \Delta_s(a, b^\circ) \).
Example

- Consider absolute value function, i.e., $z \mapsto \bar{z} : \mathbb{C} \to \mathbb{C}$.

- $f \in \delta(b \chi_a) \iff D(-1, 1) \subseteq b$.

- Thus, $\mathcal{L} f(z) = D(-1, 1)$.
Stone duality for analytic functions

- $R \in \Delta^1(U)$ if:
 \[
 \forall a_0 < 1 \\forall \epsilon > 0 \ \exists \delta > 0. \ a < a_0 \ \& \ \text{diam}(a) < \delta \\
 \exists O \in B^0_C. \ \text{diam}(O) < \epsilon \ \& \ R \in \Delta_s(a, O)
 \]

- $\Delta^1(U)$ class of approximable mapping representing C^1 functions.

- f is analytic iff $A_f \in \Delta^1(U)$.

- $R \in \Delta^1(U)$ iff G_R is analytic.
Derivative of approximable mappings

- Single-step approximable mapping \(\eta_{(a,O)} : BU \to BC(\mathbb{C}) \) defined by:

\[
c \eta_{(a,O)} \vartriangleleft V \iff \overline{c} \subseteq a, \quad \overline{O} \subseteq V
\]
Derivative of approximable mappings

- **Single-step approximable mapping** $\eta(a, O) : B_U \rightarrow B_C(\mathbb{C})$
 defined by:
 \[c \eta(a, O) \square V \iff \overline{c} \subseteq a, \overline{O} \subseteq V \]

- Let $R : B_U \rightarrow B_C$ be a Lipschitzian approximable mapping. The **Lipschitzian derivative** of R is defined as
 \[\text{L}(R) = \sup\{\eta(a, O) : R \in \Delta_s(a, O)\} \]
Derivative of approximable mappings

- **Single-step approximable mapping** \(\eta_{(a,O)} : B_U \to B_{\mathbb{C}}(\mathbb{C}) \) defined by:

\[
c \eta_{(a,O)} \sqsubset V \iff \overline{c} \subseteq a, \ \overline{O} \subseteq V
\]

- Let \(R : B_U \to B_{\mathbb{C}} \) be a Lipschitzian approximable mapping. The **Lipschitzian derivative** of \(R \) is defined as

\[
L(R) = \sup \{ \eta_{(a,O)} : R \in \Delta_s(a, O) \}
\]

- **Stone duality**, \(L(R) = A_{\mathcal{L}G_R} \).

- \(L(A_f) = A_{\mathcal{L}f} \).
Calculus of the Lipschitzian derivative

- \(R_1, R_2 : B_U \to B_C \) approximable mappings. Then:

\[
L(R_1) + L(R_2) \subseteq L(R_1 + R_2)
\]
equality holds if \(R_1 \) or \(R_2 \) be in \(\Delta^1(U) \).

- \(R_1, R_2 : B_U \to B_C \) approximable mappings. Then:

\[
R_1 \cdot L(R_2) + R_2 \cdot L(R_1) \subseteq L(R_1 \cdot R_2)
\]
equality holds if \(R_1 \) or \(R_2 \) be in \(\Delta^1(U) \).

- \(R_1 : B_{U_1} \to B_C \) and \(R_2 : B_{U_2} \to B_C \) approximable mappings, \(U_1 \subseteq \mathbb{C}, U_2 \subseteq \mathbb{C} \) and \(\text{Im}(R_1) \subseteq B_{U_2} \). Then:

\[
(L(R_2) \circ R_1) \cdot L(R_1) \subseteq L(R_2 \circ R_1)
\]
equality holds if \(R_1 \in \Delta^1(U_1) \) or \(R_2 \in \Delta^1(U_2) \).
Conclusion and future work:

- Implementation in Haskell and Coq.
- Validation of Automatic Differentiation.