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Orientation

Earlier work (Normann 2000, Longley 2007):
A wide class of models/languages for higher-order computation
(cast as typed partial combinatory algebras) gives rise to just a

handful of total type structures over N (types N,NN,NNN
, . . .).

‘Continuous operations on continuous data’ ⇒ Ct (Kleene-Kreisel)

‘Effective operations on continuous data’ ⇒ Cteff (⊂ Ct)

‘Effective operations on effective data’ ⇒ HEO

This work: Extend these ‘ubiquity’ results to other types more
relevant to mathematical practice, e.g.

Spaces of continuous functions on subsets of Rn

Spaces of analytic functions on subsets of C.

Operators on such spaces . . . [E.g. finite types over R]

Also outline a cleaner, more axiomatic approach than that of (L
2007) — and widen the class of models in some ways.
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Foundational issues

Recall how such ‘mathematical types’ are constructed within a
foundational framework based on Church’s simple types
(as in e.g. Isabelle/HOL). Suppose types built up from N via ‘→’
(total function space constructor).

‘Days of Creation’ for the mathematical universe . . .

Day 1: Integers / rationals are representable at type N.

Day 2: Real / complex numbers are representable at type N→N.

Day 3: Functions on R or C are representable at (N→N)→ (N→N).

Day 4: Operators on such functions are representable at . . . .

etc.

So in one sense, the (hereditarily total) finite types over N already
suffice for representing these mathematical objects.
But . . .

3 / 10



Foundational issues

Recall how such ‘mathematical types’ are constructed within a
foundational framework based on Church’s simple types
(as in e.g. Isabelle/HOL). Suppose types built up from N via ‘→’
(total function space constructor).

‘Days of Creation’ for the mathematical universe . . .

Day 1: Integers / rationals are representable at type N.

Day 2: Real / complex numbers are representable at type N→N.

Day 3: Functions on R or C are representable at (N→N)→ (N→N).

Day 4: Operators on such functions are representable at . . . .

etc.

So in one sense, the (hereditarily total) finite types over N already
suffice for representing these mathematical objects.
But . . .

3 / 10



Foundational issues

Recall how such ‘mathematical types’ are constructed within a
foundational framework based on Church’s simple types
(as in e.g. Isabelle/HOL). Suppose types built up from N via ‘→’
(total function space constructor).

‘Days of Creation’ for the mathematical universe . . .

Day 1: Integers / rationals are representable at type N.

Day 2: Real / complex numbers are representable at type N→N.

Day 3: Functions on R or C are representable at (N→N)→ (N→N).

Day 4: Operators on such functions are representable at . . . .

etc.

So in one sense, the (hereditarily total) finite types over N already
suffice for representing these mathematical objects.
But . . .

3 / 10



Foundational issues

Recall how such ‘mathematical types’ are constructed within a
foundational framework based on Church’s simple types
(as in e.g. Isabelle/HOL). Suppose types built up from N via ‘→’
(total function space constructor).

‘Days of Creation’ for the mathematical universe . . .

Day 1: Integers / rationals are representable at type N.

Day 2: Real / complex numbers are representable at type N→N.

Day 3: Functions on R or C are representable at (N→N)→ (N→N).

Day 4: Operators on such functions are representable at . . . .

etc.

So in one sense, the (hereditarily total) finite types over N already
suffice for representing these mathematical objects.
But . . .

3 / 10



Foundational issues

Recall how such ‘mathematical types’ are constructed within a
foundational framework based on Church’s simple types
(as in e.g. Isabelle/HOL). Suppose types built up from N via ‘→’
(total function space constructor).

‘Days of Creation’ for the mathematical universe . . .

Day 1: Integers / rationals are representable at type N.

Day 2: Real / complex numbers are representable at type N→N.

Day 3: Functions on R or C are representable at (N→N)→ (N→N).

Day 4: Operators on such functions are representable at . . . .

etc.

So in one sense, the (hereditarily total) finite types over N already
suffice for representing these mathematical objects.
But . . .

3 / 10



Foundational issues

Recall how such ‘mathematical types’ are constructed within a
foundational framework based on Church’s simple types
(as in e.g. Isabelle/HOL). Suppose types built up from N via ‘→’
(total function space constructor).

‘Days of Creation’ for the mathematical universe . . .

Day 1: Integers / rationals are representable at type N.

Day 2: Real / complex numbers are representable at type N→N.

Day 3: Functions on R or C are representable at (N→N)→ (N→N).

Day 4: Operators on such functions are representable at . . . .

etc.

So in one sense, the (hereditarily total) finite types over N already
suffice for representing these mathematical objects.
But . . .

3 / 10



Subset and quotient types

For ‘practical’ purposes, it’s helpful to add subset and quotient
types. E.g. R as a quotient of a subset of N→ N.

In the context of a classical logic (as in Isabelle/HOL), this is an
inessential extension: e.g. a function with domain S ⊆ N→ N can
always be represented by a function on N→ N.

Not so in constructive or computable settings. E.g. under any
reasonable definition of ‘computability’ . . .

f 7→ min i . f (i) 6= 0 is computable on (N→ N)− {Λi .0}, but not
extendable to a computable (or continuous) function on N→ N.

x 7→ 1/x : R− {0} → R is computable, but not extendable to a
computable (or continuous) function R→ R.

Given a closed curve c in the plane and a point p not on c , can
compute the winding number of c around p. Not extendable to a
computable operation on arbitrary pairs (c , p).
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Robust computability notions for mathematical types

Moral: Saying what ‘computability’ means at type S → T doesn’t
immediately fix what it should mean at S ′ → T where S ′ ⊆ S .

So a ‘computability theory’ for analysis should pay due attention to
subset types. (And to quotients, but focus on subsets for now.)

From earlier work, we know that under quite mild conditions, two
‘higher-order computability models’ (TPCAs) yield same objects at
all simple types over N.

To what extent does this remain true when subset types are
thrown in?

(In other words, how extensive are the subcategories shared by
many different models Per(A)?)

Much existing work (e.g. in Type Two Effectivity) focuses on one
particular underlying ‘model of computation’.

Our contribution: the classes of functions we get are (largely)

independent of the choice of computation model.

5 / 10



Robust computability notions for mathematical types

Moral: Saying what ‘computability’ means at type S → T doesn’t
immediately fix what it should mean at S ′ → T where S ′ ⊆ S .

So a ‘computability theory’ for analysis should pay due attention to
subset types. (And to quotients, but focus on subsets for now.)

From earlier work, we know that under quite mild conditions, two
‘higher-order computability models’ (TPCAs) yield same objects at
all simple types over N.

To what extent does this remain true when subset types are
thrown in?

(In other words, how extensive are the subcategories shared by
many different models Per(A)?)

Much existing work (e.g. in Type Two Effectivity) focuses on one
particular underlying ‘model of computation’.

Our contribution: the classes of functions we get are (largely)

independent of the choice of computation model.

5 / 10



Robust computability notions for mathematical types

Moral: Saying what ‘computability’ means at type S → T doesn’t
immediately fix what it should mean at S ′ → T where S ′ ⊆ S .

So a ‘computability theory’ for analysis should pay due attention to
subset types. (And to quotients, but focus on subsets for now.)

From earlier work, we know that under quite mild conditions, two
‘higher-order computability models’ (TPCAs) yield same objects at
all simple types over N.

To what extent does this remain true when subset types are
thrown in?

(In other words, how extensive are the subcategories shared by
many different models Per(A)?)

Much existing work (e.g. in Type Two Effectivity) focuses on one
particular underlying ‘model of computation’.

Our contribution: the classes of functions we get are (largely)

independent of the choice of computation model.
5 / 10



Models of higher-order computation

Types: σ ::= N | σ → σ. Pure types: 0 = N, k + 1 = k → N.

General setup: a typed partial combinatory algebra TPCA A with weak
numerals and type 2 recursion. That is:

a set A(σ) for each type σ,
partial ‘application’ functions ·στ : A(σ → τ)× A(σ) ⇀ A(τ)
. . . such that there exist elements

kστ , sρστ , 0̂, 1̂, . . . , suc , primrec , Y2

satisfying familiar axioms.

There’s an abundance of such structures, both ‘syntactic’ (term models
for higher-order programming languages) and ‘semantic’ (arising from
domain theory, game semantics, . . . ), embodying different flavours of
higher-order computability.
These include untyped PCAs as a special case (K1, K2, Pω, . . . ).

Everything we do also works in the relative setting (TPCA A with
designated ‘computable substructure’ A]), at a slight notational cost.

Our theory also works for a ‘non-deterministic’ variant of the above setup,

so that we cover e.g. lattice models like Pω. (Fills a gap in (L 2007)). 6 / 10



Special axioms

We’ll generalize the argument used for ‘continuous’ models in (L 2007).
There, we assumed A came with a simulation in K2 of a certain kind.
Here, we replace this by some cleaner intrinsic conditions on A.

Let m, n, p range over N = {0̂, 1̂, . . .} ⊆ A(N).
Let NN = {g ∈ A(1) | ∀n.∃m. g · n = m}.

Continuity: For any F ∈ A(2), if F · g = p for all g ∈ NN such that
∀n. g · n = 0̂, then F · g = p for some g ∈ NN such that ∃n. g · n 6= 0̂.

Enumeration: For any f ∈ A(1) there exists g ∈ NN such that

∀m, n. f · n = m ⇔ ∃p. g · p = ‘〈n,m〉+ 1‘

Normalizability: There exists norm ∈ A(1→ 1) such that

∀f ∈ NN . norm · f ∼ f , ∀g , g ′ ∈ NN . f ∼ g ⇒ norm · f = norm · g

where f ∼ g means ∀n. f · n = g · n. (Excludes very intensional models
like K1.)

These will hold in all ‘continuous’ models covered in (L 2007), most

‘effective’ ones, and others besides.
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Key idea: graphs and regular types

A key role will be played by the set ∆ of functions N→ N
representable in A (by an element of NN). Contents of ∆ will
completely determine contents of many other types.
(E.g. Finite types over N are Ct if ∆ = NN, or HEO if ∆ = NN

eff.)

More specifically, for many types X , we shall have Φ ∈ X iff Φ has
a ‘graph’ within ∆. We say X is regular if this is the case.

Example: Second-order functions (defined on subsets of ∆).
Think of ∆ as a modest set over A.
Let X be any regular (in categorical sense!) subobject of ∆.

We say g : N→ N is a graph of F : |X | → N if g enumerates a set
of elements 〈〈〈n1,m1〉, . . . , 〈nr ,mr 〉〉, p〉 that form a ‘graph’ of F in
the expected sense.

Theorem: Under our axioms, F is present in the modest set
(X ⇒ N) iff F has a graph in ∆. So all such (X ⇒ N) are regular.

(Abstract version of Kreisel-Lacombe-Shoenfield theorem.)
NB. Normalizability means we needn’t assume X ⊆ ∆ is separable.
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Higher types

Consider the modest sets over A we can reach by starting from N
and alternately:

picking any regular subobject

applying (− ⇒ N).

Thus Q0 ⊆ N, Q1 ⊆ (Q0 ⇒ N), . . . , Qk ⊆ (Qk−1 ⇒ N).

Main theorem: Suppose Q0, . . . ,Qk−1 above are all ∆-separable
subobjects (Qk need not be). Then the type (Qk ⇒ N) is regular.
So if A,B are two models with ∆A = ∆B , they agree at this type.

Here, suitable notions of graph and ∆-separable subset are defined
by induction for the relevant types.

Can in fact extend all this to all modest sets reachable from N via
⇒, regular subobjects and regular quotients.

At type level 2, we require KLS methods but only weak computing power
(ground-type iteration).

At type levels k ≥ 3, we require the Normann algorithms to get from a

graph in ∆ to a realizer in A(k).
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Specific cases

If ∆ = NN, all subsets are ∆-separable!
So we get ubiquity for all types generated from N by ⇒, regular
subobjects and regular quotients.

E.g. the finite types R,RR,RRR
, . . .: get ubiquity theorem for the

intensional hierarchy (cf. Bauer, Escardó, Simpson, Normann,
Schröder).

The ‘relative’ case (NN;NN
eff) is also interesting: separability

questions become non-trivial. Nevertheless:

The examples from analysis given earlier are covered.

Get ubiquity for R-hiearchy at least for levels ≤ 4 (where R
has level 0), and probably all the way.

Lots more to explore (e.g. particular problems in analysis;
relationship to Type Two Effectivity).
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