Recursively defined cpo algebras

Ohad Kammar and Paul Blain Levy

July 13, 2018

1 Bilimit compact categories

An axiomatization of a category of domains.

A Cpo-enriched category is a category ${\cal C}$ whose homsets are cpos, such that composition is continuous.

It is bilimit compact when

- each homset $\mathcal{C}(A,B)$ is pointed
- composition is bistrict
- C has a zero object (both initial and terminal)
- Every ω -chain $(A_n, e_n, p_n)_{n \in \mathbb{N}}$ in \mathcal{C}^{ep} has a bilimit, i.e. a cocone $V, (u_n, r_n)_{n \in \mathbb{N}}$ such that $\bigsqcup_{n \in \mathbb{N}} u_n \cdot r_n = \operatorname{id}_V$.

- The category \mathbf{Cpo}^{\perp} of cppos and strict continuous maps.
- The opposite of a bilimit compact category.
- A product of bilimit compact categories.

- Let $\ensuremath{\mathcal{C}}$ be a bilimit compact category.
- Any locally continuous functor $H \colon \mathcal{C} \to \mathcal{C}$
- has a bifree algebra (A, θ)
- i.e. θ : $HA \cong A$ is both an initial algebra and a final coalgebra.

In particular, the zero object is a bifree algebra of the identity functor.

The notion of bifree algebra extends to mixed variance functors.

We want to apply this to the modelling of recursive types.

We'll use call-by-push-value, which subsumes call-by-value and call-by-name typed $\lambda\text{-}calculus.$

A value type A denotes a cpo. Call-by-value type.

A computation type \underline{B} denotes a cppo. Call-by-name type.

Type syntax, including recursive types:

Semantics of types:

$$\llbracket U\underline{B} \rrbracket = \llbracket \underline{B} \rrbracket \qquad \llbracket FA \rrbracket = \llbracket A \rrbracket_{\perp}$$

Recursive value type

$$\begin{array}{rcl} D & \stackrel{\mathrm{def}}{=} & \operatorname{rec} {\tt X}.A \\ D & \cong & A[D/{\tt X}] \end{array}$$

Should denotes an isomorphism in ${\bf Cpo}.$

Recursive computation type $\underline{D} \stackrel{\text{def}}{=} \texttt{rec } \underline{X}.\underline{B}$

$$\underline{\underline{D}} \stackrel{\text{def}}{=} \operatorname{rec} \underline{\mathbf{X}} . \underline{\underline{B}}$$
$$\underline{\underline{D}} \cong \underline{\underline{B}} [\underline{\underline{D}} / \underline{\mathbf{X}}]$$

Should denote an isomorphism in \mathbf{Cpo}^{\perp} .

Recursive value type

$$\begin{array}{rcl} D & \stackrel{\mathrm{def}}{=} & \operatorname{rec} {\tt X}.A \\ D & \cong & A[D/{\tt X}] \end{array}$$

Should denotes an isomorphism in \mathbf{Cpo} .

Recursive computation type $\underline{D} \stackrel{\text{def}}{=} \texttt{rec } \underline{X}.\underline{B}$

$$\underline{\underline{D}} \stackrel{\text{def}}{=} \operatorname{rec} \underline{\mathbf{X}} . \underline{\underline{B}}$$
$$\underline{\underline{D}} \cong \underline{\underline{B}} [\underline{\underline{D}} / \underline{\mathbf{X}}]$$

Should denote an isomorphism in \mathbf{Cpo}^{\perp} .

But Cpo is not bilimit compact—it has no zero object.

Let $\ensuremath{\mathcal{B}}$ be a Cpo-enriched category.

A bilimit compact expansion of $\mathcal B$ is a bilimit compact Cpo-enriched category $\mathcal C$ containing $\mathcal B$ as a subcategory such that

- $\mathcal{B}(A,B)$ is an admissible subset of $\mathcal{C}(A,B)$
- given
 - chains $(A_n,e_n,p_n)_{n\in\mathbb{N}}$ and (A'_n,e'_n,p'_n) in $\mathcal{C}^{\mathrm{ep}}$
 - bilimits $V, (u_n, r_n)_{n \in \mathbb{N}}$ and $V', (u'_n, r'_n)_{n \in \mathbb{N}}$
 - a map $\alpha_n \colon A_n \to A'_n$ commuting with e_n and with p_n

the join of $e'_n \cdot \alpha_n \cdot p_n$ is in $\mathcal{B}(V, V')$.

- The category **pCpo** of cpos and partial continuous maps is a bilimit compact expansion of **Cpo**.
- Preserved by $\mathcal{C} \mapsto \mathcal{C}^{\mathsf{op}}$.
- Preserved by product.

We seek an fixpoint of a mixed variance functor H on \mathcal{B} . Take a bilimit compact expansion \mathcal{C} of \mathcal{B} .

Extend H to C.

Obtain a fixpoint of H on C.

Every isomorphism in C is an isomorphism in B.

To model a language with dynamic generation (of names, references, etc.),

a value type denotes an object of $[\mathbb{I},\mathbf{Cpo}]$

a computation type denotes an object of $[\mathbb{I}, \mathbf{Cpo}^{\perp}]$,

Theorem

- $[\mathbb{I}, \mathcal{C}]$ is bilimit compact if \mathcal{C} is.
- Let B have bilimit compact expansion C. Then [I, B] has bilimit compact expansion, as follows: a map A → B is a map in [I, C].

1 If programs either terminate or diverge, $[\underline{B}]$ is a cppo.

- **(**) If programs either terminate or diverge, $[\underline{B}]$ is a cppo.
- **②** Suppose programs can crash. Then $[\![\underline{B}]\!]$ is a cppo A with a "crash" element.

- **(**) If programs either terminate or diverge, $[\underline{B}]$ is a cppo.
- Suppose programs can crash. Then [<u>B</u>] is a cppo A with a "crash" element.
- Suppose programs can peform I/O, described by a functor *H*: Cpo[⊥] → Cpo. Then [<u>B</u>] is a cppo *A* with a map *HA* → *A*.

- **1** If programs either terminate or diverge, $[\underline{B}]$ is a cppo.
- Suppose programs can crash. Then [<u>B</u>] is a cppo A with a "crash" element.
- Suppose programs can peform I/O, described by a functor H: Cpo[⊥] → Cpo. Then [<u>B</u>] is a cppo A with a map HA → A.
- Suppose programs can lookup and update memory, and S is the set of states. Then $[\![B]\!]$ is a cppo A with maps

satisfying some equations.

We need to form

- a recursive crash-cppo
- a recursive cppo-*H*-algebra
- a recursive cppo lookup/update algebra.

But the categories of crash-cppos, cppo-H-algebras, and cppo lookup/update algebras are not bilimit compact, as they have no zero object.

We need to form

- a recursive crash-cppo
- a recursive cppo-*H*-algebra
- a recursive cppo lookup/update algebra.

But the categories of crash-cppos, cppo-H-algebras, and cppo lookup/update algebras are not bilimit compact, as they have no zero object.

Solution: expand the categories.

The category of crash cppos and strict homomorphisms lacks a zero object.

The category of crash cppos and strict homomorphisms lacks a zero object. The expanded category: a morphism $f: (A, c) \rightarrow (B, d)$ is a lax homomorphism, a strict map such that $f(c) \leq d$. The category of cppo- $H\mathchar`-$ algebras and strict homomorphisms lacks a zero object.

The category of cppo-H-algebras and strict homomorphisms lacks a zero object.

The expanded category: a morphism $f\colon (A,c)\to (B,d)$ is a lax homomorphism, a strict map such that

$$\begin{array}{c|c} HA \xrightarrow{Hf} HB \\ c & \downarrow d \\ A \xrightarrow{f} B \end{array}$$

Bilimit compactness (for the Eilenberg-Moore version) was proved by Fiore.

- Computation types denote cppo-algebras.
- The category of cppo-algebras is not bilimit compact.
- We interpret recursive computation types using the bilimit compact expansion in which a morphism is a lax homomorphism.
- \bullet The appropriate functors (e.g. $\rightarrow)$ can be extended to this category.
- Caveat We conjecture this model is computationally adequate, but proving it is work in progress.