Domain Theory for
Intensional Computation

Barry Jay
Centre for Artificial Intelligence
School of Software
University of Technology Sydney
Barry.Jay@uts.edu.au

dedicated to Dana Scott

Intensional Computation

Extensional computation applies functions.
Intensional computation queries internal structure.
Pattern calculus queries data structures.
SF-calculus queries program structures.
ASF-calculus queries lambda abstractions.

All three calculi are confluent, higher-order rewriting systems.
What is their denotational semantics?

Focus on SF-calculus versus SK-calculus (combinatory logic).

Domain Theory

In A-calculus all closed normal forms are abstractions, so the

domain equation is
D=D—D.

In SK-calculus, S and K have arities 3 and 2 so normal forms

are given by
n:=S|Sn|Snn|K|Kn

and the domain equation is
C=1+C+CxC+1+C.
A basis for C is given by adding L to the normal forms

ci=1]S|Sc|Scc|K|Kc.

Incompleteness of SK-calculus

There is a function from C to C — C that maps each
combinator to the corresponding function of combinators. For
example, SKK and SKS are both mapped to the identity on C.

There is no inverse from C — Cto C.
For example, equality of normal forms is not SK-definable,

since combinators, being extensional, cannot separate the
identity functions SKK and SKS.

What about programs?

Recursive programs are fixpoint functions,

so who cares about normal forms?

Non-termination of fixpoints is unavoidable in A-calculus, but
SK-calculus supports

recursive programs in normal form

where programs are normal until given arguments. In brief,
there is a combinator Y, such that Yaf is a fixpoint function

(Yof)x — f(Yof)x

but Y>f is strongly normalizing (SN) if f is. For example, all
u-recursive functions are given by SN combinators.

SF-calculus

SMNP — MP(NP)
FOMN — M Ois Sor F
F(PQMN — NPQ PQ is a compound.

NOT all applications are compounds.

ONLY head normal applications are compounds, i.e.
combinations of the form SM, SMN, FM or FMN.

Three rules with side conditions become seven rules without
side conditions.

Combinations # Combinators

Define

K = FF
| = SKK

since KMN = FFMN — M and SKKM — KM(KM) — M.
So SF-calculus is combinatorially complete.

F is not definable in SK-calculus since it can separate the
compounds SKS and SKK.

SF-calculus supports combinations that are not combinators.
SK-calculus is not combinationally complete.

Intensional Completeness

SF-calculus supports
e equality of normal forms
e pattern matching, including generic queries
¢ a Godel function from normal forms to natural numbers
e arbitrary (computable) program analyses.
SF-calculus is intensionally complete.

Denotational Semantics of SF-calculus
Normal forms are given by
n:=S|Sn|{Snn|F|Fn|Fnn
so the domain equation is
H1+H+HxH+1+H+HxXxH.
Give H a basis by adding L to the normal forms.
Theorem
H — H is a retract of H.

Proof.

H — H has a basis of step functions d | e where d and e are in
the basis for H. These are representable in SF, -calculus as
pattern-matching functions where 1. = _ matches anything

|d=e
|_= 1.

Conclusions

SK-calculus is incomplete for computation. The syntactic proof
(2011) is now complemented by a semantic proof, that C — C
is not a retract of C.

SF-calculus is intensionally complete. The syntactic proof for
normal forms (2011), and the identification of programs with
normal forms (2018), is now complemented by a semantic
proof, that H — H is a retract of H. The proof identifies
step-functions with pattern-matching functions.

Where are the lambdas?

In principle, this approach should apply to ASF-calculus, but
deciding if an abstraction is a compound is very complex.

Recent work avoids this by giving a reduction-preserving
translation of a A-calculus (closure calculus) to SF-calculus.

What is the domain theory of closure calculus?
What happens when S and F are added?

