Domain Theory for Intensional Computation

Barry Jay Centre for Artificial Intelligence School of Software University of Technology Sydney Barry.Jay@uts.edu.au

dedicated to Dana Scott

(日) (日) (日) (日) (日) (日) (日)

Intensional Computation

(日) (日) (日) (日) (日) (日) (日)

All three calculi are confluent, higher-order rewriting systems.

What is their denotational semantics?

Focus on SF-calculus versus SK-calculus (combinatory logic).

Domain Theory

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

In $\lambda\text{-calculus}$ all closed normal forms are abstractions, so the domain equation is

$$D\cong D o D$$
 .

In *SK*-calculus, *S* and *K* have arities 3 and 2 so normal forms are given by

 $n ::= S \mid S n \mid S n n \mid K \mid K n$

and the domain equation is

$$C \cong 1 + C + C \times C + 1 + C$$
.

A basis for C is given by adding \perp to the normal forms

 $c ::= \bot \mid S \mid S c \mid S c c \mid K \mid K c.$

Incompleteness of SK-calculus

There is a function from *C* to $C \rightarrow C$ that maps each combinator to the corresponding function of combinators. For example, *SKK* and *SKS* are both mapped to the identity on *C*.

There is **no** inverse from $C \rightarrow C$ to C.

For example, equality of normal forms is not *SK*-definable, since combinators, being extensional, cannot separate the identity functions *SKK* and *SKS*.

What about programs?

Recursive programs are fixpoint functions, so who cares about normal forms? Non-termination of fixpoints is unavoidable in λ -calculus, but *SK*-calculus supports

recursive programs in normal form

where programs are normal until given arguments. In brief, there is a combinator Y_2 such that Y_2f is a fixpoint **function**

$$(Y_2 f) x \longrightarrow f(Y_2 f) x$$

but $Y_2 f$ is strongly normalizing (SN) if f is. For example, all μ -recursive functions are given by SN combinators.

SF-calculus

$\begin{array}{rccc} SMNP & \longrightarrow & MP(NP) \\ FOMN & \longrightarrow & M & O \text{ is } S \text{ or } F \\ F(PQ)MN & \longrightarrow & NPQ & PQ \text{ is a compound.} \end{array}$

NOT all applications are compounds.

ONLY head normal applications are compounds, i.e. combinations of the form *SM*, *SMN*, *FM* or *FMN*.

Three rules with side conditions become seven rules without side conditions.

Combinations \neq Combinators

Define

$$K = FF$$

 $I = SKK$

since $KMN = FFMN \longrightarrow M$ and $SKKM \longrightarrow KM(KM) \longrightarrow M$. So *SF*-calculus is combinatorially complete.

F is **not** definable in *SK*-calculus since it can separate the compounds *SKS* and *SKK*.

SF-calculus supports combinations that are not combinators. *SK*-calculus is **not** combinationally complete.

Intensional Completeness

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

SF-calculus supports

- equality of normal forms
- pattern matching, including generic queries
- a Gödel function from normal forms to natural numbers
- arbitrary (computable) program analyses.
- SF-calculus is intensionally complete.

Denotational Semantics of *SF*-calculus Normal forms are given by

 $n ::= S \mid S n \mid S n n \mid F \mid F n \mid F n n$

so the domain equation is

```
H \cong 1 + H + H \times H + 1 + H + H \times H .
```

Give *H* a basis by adding \perp to the normal forms.

Theorem

 $H \rightarrow H$ is a retract of H.

Proof.

 $H \rightarrow H$ has a basis of step functions $d \downarrow e$ where d and e are in the basis for H. These are representable in SF_{\perp} -calculus as pattern-matching functions where $\perp = _$ matches anything

 $| d \Rightarrow e$ $| _ \Rightarrow \bot$.

Conclusions

SK-calculus is incomplete for computation. The syntactic proof (2011) is now complemented by a semantic proof, that $C \rightarrow C$ is not a retract of *C*.

SF-calculus is intensionally complete. The syntactic proof for normal forms (2011), and the identification of programs with normal forms (2018), is now complemented by a semantic proof, that $H \rightarrow H$ is a retract of *H*. The proof identifies step-functions with pattern-matching functions.

Where are the lambdas?

In principle, this approach should apply to λSF -calculus, but deciding if an abstraction is a compound is very complex.

Recent work avoids this by giving a reduction-preserving translation of a λ -calculus (closure calculus) to *SF*-calculus.

What is the domain theory of closure calculus? What happens when *S* and *F* are added?