Higher-dimensional categories: induction on extensivity

Thomas Cottrell1
Soichiro Fujii2
John Power3

1Department of Mathematical Sciences, University of Bath
2Department of Computer Science, University of Tokyo
3Department of Computer Science, University of Bath

7 July, 2018
Leinster’s method for defining weak n-categories:

- Start with the free strict n-category monad $T^{(n)}$, which is cartesian.
- For a cartesian monad T on C, define T-operads as monoids in $C/T1$.
- Define a notion of contraction on $T^{(n)}$-operads.
- A weak n-category is an algebra for the initial $T^{(n)}$-operad with contraction.

Aims:

- Enrich this to define weak n-dimensional \mathcal{V}-categories.
- Build dimensions through iterated enrichment.
Extensivity

Definition

A category \(\mathcal{V} \) (with small coproducts) is extensive if, for any set \(I \) and family of objects \((X_i)_{i \in I}\), the functor

\[
\coprod: \prod_{i \in I} (\mathcal{V}/X_i) \rightarrow \mathcal{V}/(\coprod_{i \in I} X_i)
\]

is an equivalence of categories.

Examples: \textbf{Set}, \(\omega\text{-Cpo} \), \textbf{Cat}, \(\mathcal{V}\text{-Cat} \) and \(\mathcal{V}\text{-Gph} \) (for extensive \(\mathcal{V} \)).
Definition

Let \mathcal{V} be a category with finite products. For each natural number n, \mathcal{V}-$\text{Cat}^{(n)}$ is defined by:

\mathcal{V}-$\text{Cat}^{(0)} = \mathcal{V}$; \quad \mathcal{V}-$\text{Cat}^{(n+1)} = (\mathcal{V}$-$\text{Cat}^{(n)})$-$\text{Cat}$,

and \mathcal{V}-$\text{Gph}^{(n)}$ is defined by:

\mathcal{V}-$\text{Gph}^{(0)} = \mathcal{V}$; \quad \mathcal{V}-$\text{Gph}^{(n+1)} = (\mathcal{V}$-$\text{Gph}^{(n)})$-$\text{Gph}$.

When $\mathcal{V} = \text{Set}$, Set-$\text{Cat}^{(n)} = n$-Cat, the category of strict n-categories.
Proposition

If \mathcal{V} is extensive and finitely complete, then \mathcal{V}-Gph and \mathcal{V}-Cat are also extensive and finitely complete.

Corollary

If \mathcal{V} is extensive and finitely complete, then \mathcal{V}-$\text{Gph}^{(n)}$ and \mathcal{V}-$\text{Cat}^{(n)}$ are also extensive and finitely complete.
Cartesian monads

Definition

A monad \((T, \eta, \mu)\) on \(\mathcal{C}\) is *cartesian* if

- \(\mathcal{C}\) has all pullbacks,
- \(T\) preserves pullbacks,
- all the naturality squares for \(\eta\) and \(\mu\) are pullback squares.

Proposition

Let \(\mathcal{V}\) be extensive and finitely complete. For each \(n\), there is an adjunction

\[
\mathcal{V}\text{-Gph}^{(n)} \underoverset{\perp}{\rightarrow}{\leftarrow} \mathcal{V}\text{-Cat}^{(n)}
\]

and the induced monad \(T^{(n)}\) is cartesian.
T-operads

For a cartesian monad T on a finitely complete category C, $C/T1$ can be given a monoidal structure.

Definition

A *T-operad* is a monoid in $C/T1$.

Given a T-operad $m: M \to T1$, an *algebra for* (M, m) consists of an object X of C together with an action of (M, m) on X.

- Classical operads: $C = \textbf{Set}$, $T = \text{free monoid}$.
- For weak n-dimensional \mathcal{V}-categories, use $C = \mathcal{V}$-$\textbf{Gph}^{(n)}$, $T = T^{(n)}$.
A *contraction* on \(m: M \to T^{(n)}1 \) consists of a lifting

\[
\begin{array}{ccc}
\partial_j & \xrightarrow{h} & M \\
\downarrow f_j & & \downarrow m \\
C_j & \xrightarrow{k} & T^{(n)}1
\end{array}
\]

for every such commuting square, where \(f_j \) is a “cell boundary inclusion”.

Definition

Let \(\mathcal{V} \) be extensive, finitely complete, and locally presentable.

A *weak n-dimensional \(\mathcal{V} \)-category* is an algebra for the initial \(T^{(n)} \)-operad with contraction.

For \(\mathcal{V} = \textbf{Set} \), this agrees with Leinster’s definition of weak \(n \)-category.