Higher-dimensional categories: induction on extensivity

Thomas Cottrell¹ Soichiro Fujii² John Power³

¹Department of Mathematical Sciences, University of Bath

²Department of Computer Science, University of Tokyo

³Department of Computer Science, University of Bath

7 July, 2018

Leinster's method for defining weak *n*-categories:

- Start with the free strict *n*-category monad $T^{(n)}$, which is cartesian.
- For a cartesian monad T on C, define T-operads as monoids in C/T1.
- Define a notion of *contraction* on $T^{(n)}$ -operads.
- A weak *n*-category is an algebra for the initial $T^{(n)}$ -operad with contraction.

Aims:

- Enrich this to define weak *n*-dimensional *V*-categories.
- Build dimensions through iterated enrichment.

Extensivity

Definition

A category \mathcal{V} (with small coproducts) is *extensive* if, for any set I and family of objects $(X_i)_{i \in I}$, the functor

is an equivalence of categories.

Examples: Set, ω -Cpo, Cat, \mathcal{V} -Cat and \mathcal{V} -Gph (for extensive \mathcal{V}).

Definition

Let $\ensuremath{\mathcal{V}}$ be a category with finite products.

For each natural number n, V-**Cat**⁽ⁿ⁾ is defined by:

$$\mathcal{V}$$
-Cat⁽⁰⁾ = \mathcal{V} ; \mathcal{V} -Cat⁽ⁿ⁺¹⁾ = (\mathcal{V} -Cat⁽ⁿ⁾)-Cat,

and \mathcal{V} -**Gph**⁽ⁿ⁾ is defined by:

 \mathcal{V} -Gph⁽⁰⁾ = \mathcal{V} ; \mathcal{V} -Gph⁽ⁿ⁺¹⁾ = (\mathcal{V} -Gph⁽ⁿ⁾)-Gph.

When $\mathcal{V} = \mathbf{Set}$, \mathbf{Set} - $\mathbf{Cat}^{(n)} = n$ - \mathbf{Cat} , the category of strict *n*-categories.

Proposition

If \mathcal{V} is extensive and finitely complete, then \mathcal{V} -**Gph** and \mathcal{V} -**Cat** are also extensive and finitely complete.

Corollary

If \mathcal{V} is extensive and finitely complete, then \mathcal{V} -**Gph**⁽ⁿ⁾ and \mathcal{V} -**Cat**⁽ⁿ⁾ are also extensive and finitely complete.

Definition

A monad (T, η, μ) on C is *cartesian* if

- $\mathcal C$ has all pullbacks,
- T preserves pullbacks,
- all the naturality squares for η and μ are pullback squares.

Proposition

Let \mathcal{V} be extensive and finitely complete. For each n, there is an adjunction

$$\mathcal{V}$$
-Gph⁽ⁿ⁾ $\xrightarrow{\perp} \mathcal{V}$ -Cat⁽ⁿ⁾

and the induced monad $T^{(n)}$ is cartesian.

For a cartesian monad T on a finitely complete category C, C/T1 can be given a monoidal structure.

Definition

A *T*-operad is a monoid in C/T1.

Given a *T*-operad $m: M \rightarrow T1$, an algebra for (M, m) consists of an

object X of C together with an action of (M, m) on X.

- Classical operads: C =**Set**, T =free monoid.
- For weak *n*-dimensional \mathcal{V} -categories, use $\mathcal{C} = \mathcal{V}$ -**Gph**⁽ⁿ⁾, $T = T^{(n)}$.

Contractions

A contraction on $m: M \to T^{(n)}1$ consists of a lifting

for every such commuting square, where f_j is a "cell boundary inclusion".

Definition

Let $\ensuremath{\mathcal{V}}$ be extensive, finitely complete, and locally presentable.

A weak n-dimensional \mathcal{V} -category is an algebra for the initial $\mathcal{T}^{(n)}$ -operad with contraction.

For $\mathcal{V} = \mathbf{Set}$, this agrees with Leinster's definition of weak *n*-category.