
A Revisionist History
of Denotational Semantics

Stephen Brookes

Carnegie Mellon University

Domains XIII
July 2018

1 / 23



Denotational Semantics

Compositionality Principle

The meaning of a complex expression is determined by
the meanings of its constituent expressions and the rules
to combine them.

Foundational references:
I Christopher Strachey, Dana Scott (1971)

Toward a Mathematical Semantics for Computer Languages
I Strachey (1966): Towards a Formal Semantics

Historical precursors include:
I Boole (1815–1864), Frege (1845–1925)

2 / 23



The Denotational Template

To give a semantics:
I Find a suitable mathematical universe of meanings
I Define, by structural induction, a semantic function

that maps phrases to their meanings, or denotations

Criteria for suitability: meanings should be
I abstract from machine details
I expressive of program behavior
I capable of compositional definition

Scott developed domain theory to underpin this approach, e.g.
I Scott (1970): Outline of a Mathematical Theory of Computation

3 / 23



Snapshots from History
Some landmarks

I Sequential imperative programs
- partial functions from states to states

I Low-level machine code
- continuation semantics

I Simply-typed functional programs
- cartesian-closed categories, continuous functions

I Sequential functional programs
- concrete domains, sequential functions, game semantics

I Algol-like programs
- functor categories, possible-world semantics

I Concurrent programs
- resumptions, trace sets, event structures, . . .

A common thread
I domains, recursion as fixed-point

4 / 23



Strategy

Start with a programming language and a notion of behavior,
develop a semantics to support compositional reasoning.

Criteria for success:

I Adequacy (minimum pre-requisite)
semantic equivalence implies behavioral indistinguishability

I Full abstraction (stronger, harder to achieve)
semantic equivalence = behavioral indistinguishability

By definition, an adequate denotational semantics
supports compositional reasoning about program behavior.

5 / 23



Lessons

Depending on behavior and programming language, it may be hard
to find a suitable semantics capable of compositional definition.

I Algol-like language: functor category semantics
I naturality conditions express key behavioral features

I PCF: long path via concrete domains to game semantics
I sequential functions are hard to characterize

I Concurrency: need to include non-sequential traces
I executions of c1‖c2 not definable compositionally
I semantics must account for interference between threads

6 / 23



Revisiting concurrency

I Early semantics assumed sequential consistency (SC):
. . . the result of any execution is the same as if

the operations of all the processors were executed in
some sequential order. . . Lamport 1979

I A program denotes a set of traces, with parallel composition
as interleaving, sequential composition as concatenation.

I Trace sets form a complete lattice
I Semantic constructs denote monotone functions
I Recursion, and fair interleaving, as greatest fixed point

7 / 23



Assessment

I At the time it was hard enough to deal with concurrency,
without trying to handle procedures. . .

- Later we developed Parallel Algol and a trace-based
possible-worlds semantics

I Similarly for concurrency + pointers, mutable state
- Later came Concurrent Separation Logic and action traces

Trace semantics is robust and adaptable, but inherently SC. . .

“Of the many forms of false culture, a premature converse
with abstractions is perhaps the most likely to prove fatal . . . ”

Boole, 1859.

8 / 23



Reassessment

. . . achieving sequential consistency may not be worth the
price of slowing down the processors. Lamport 1979

I Modern multi-processors do not guarantee SC behavior,
and instead provide a relaxed memory model

I reads may see stale values, because of buffering or caches
I writes may get re-ordered, for optimized performance

I There is a wide range of memory models
SC, TSO, PSO, RA, . . .

offering a variety of behavioral guarantees
I Trace semantics is not adequate, except for SC

9 / 23



Beyond trace semantics

I For a denotational account of relaxed memory,
we must abandon SC and embrace “true concurrency”.

I In ongoing work with Ryan Kavanagh, we develop a
partial-order semantic framework

I Replace traces (linear orders) with pomsets (partial orders)
I A recent burst of progress in similar vein,

e.g. Jeffrey and Riely (2016), using event structures,
has similar aims.

I We regard our pomset approach as a natural evolutionary
successor to trace semantics. . .

Denotational semantics should be more relaxed.

10 / 23



Actions

Our semantic framework builds on a set of actions,
interpreted as having an effect on state.

Here we use the following grammar for actions:

λ ::= δ idle
| i=v read
| i :=v write

Can incorporate synchronization primitives, such as locks,
actions tagged with memory levels (na, at, rel, acq,. . . ),
and fence instructions used to limit relaxation.

I Let A be the set of actions.

11 / 23



Action Pomsets cf. Pratt 1986

An action pomset (P, <,Φ) is a partial order (P, <)
with a labelling function Φ : P → A.
Pomsets are equivalent if they are order-isomorphic.
Let Pom(A) be the set of all action pomsets.

Parallel Composition
I Actions of P1 and P2 are independent

(P1, <1) ‖ (P2, <2) = (P1 ] P2, <1 ] <2)

Sequential Composition
I Actions of P1 before actions of P2

(P1, <1); (P2, <2) = (P1 ] P2, <1 ] <2 ∪P1 × P2)

12 / 23



Relaxation

Rigidity
A memory model M has a rigidity relation /M ⊆ A×A.
An ordered pair (p1, p2) can be M-relaxed unless p1 /M p2.

I SC allows no relaxations: /SC = A×A
I TSO allows write/read relaxation on distinct locations:

p1 /TSO p2 iff loc(p1) = loc(p2) or ¬(IsWrite p1 & IsRead p2)

I PSO allows write/read and write/write relaxation:
p1 /PSO p2 iff loc(p1) = loc(p2) or ¬IsWrite p1

Relaxed Composition
I Actions of P1 before actions of P2, modulo M-relaxation

(P1, <1) ;M (P2, <2) = (P1 ] P2, <1 ] <2 ∪ /M � (P1 × P2))

13 / 23



Pomset Semantics
(parameterized by memory model)

PM : Com→ P(Pom(A))

is defined by structural induction:

PM(skip) = {{δ}}
PM(i :=e) = {P; {i :=v} | (P, v) ∈ PM(e)}
PM(c1; c2) = {P1 ;M P2 | P1 ∈ PM(c1),P2 ∈ PM(c2)}
PM(c1‖c2) = {P1‖P2 | P1 ∈ PM(c1),P2 ∈ PM(c2)}
PM(if b then c1 else c2) = PM(b)tt ;PM(c1) ∪ PM(b)ff ;PM(c2)
PM(while b do c) = (PM(b)tt ;PM(c))∗;PM(b)ff

I We use ; to enforce data dependency or control dependency.
I We use ;M to allow relaxation of program order.

14 / 23



Store Buffering
Pomset semantics

(x :=1; z1:=y) ‖ (y :=1; z2:=x)

I Each SC pomset has the form

x :=1

y=v1

z1:=v1

?

?

y :=1

x=v2

z2:=v2

?

?

where v1, v2 ∈ Vint .
I For TSO: relax (x :=1, y=v1) and (y :=1, x=v2)

I For PSO: also relax (x :=1, z1:=v1) and (y :=1, z2:=v2)

15 / 23



Pomset Execution
(parameterized by memory model)

I We define the set EM(P, <) of pomset executions.
I An M-execution is an ordering <′ that extends <

and fulfills the guarantees of memory model M.
I SC: <′ is a read-coherent total order
I TSO: <′ is a read-coherent total store order
I PSO: <′ is a read-coherent per-location total store order

I Read-coherence:
(i) All initial reads of x see the same value v .
(ii) Non-initial reads of x get their value from

a maximal write to x that precedes it.
I The input-output behavior of (P, <′) is (pre(P), post(P)),

where pre(P), post(P) are the states formed by the initial
reads, maximal writes, respectively.

16 / 23



Results
Adequacy
For each memory model M we obtain a pomset semantics
that is compositional, and adequate for describing execution.

Executions cannot by themselves be defined compositionally.
This was already the case for SC, requiring use of
non-sequential traces.

Correctness
The input-output behavior of PM(c) is correct:

I For SC: consistent with trace semantics
read-coherent total order = sequentially executable trace

I For TSO, PSO: consistent with SPARC axioms
read-coherent total store order = SPARC-TSO
read-coherent per-location total store order = SPARC-PSO

Pomset behavior matches litmus test specifications. . .
17 / 23



Litmus Test 1
Store Buffering SC 7 TSO 3 PSO 3

(x :=1; z1:=y) ‖ (y :=1; z2:=x)

I Under TSO or PSO this program has an execution from

[x : 0, y : 0, z1 : , z2 : ]

to
[x : 1, y : 1, z1 : 0, z2 : 0]

in which the reads see stale values.
I Under SC every execution ends with z1 = 1 and/or z2 = 1.

18 / 23



Litmus Test 2
Message Passing SC 3 TSO 3 PSO 7

(x :=37; y :=1) ‖ (while y = 0 do skip; z :=x)

I Under SC and TSO, every execution from [x : 0, y : 0, z : ]
ends with z = 37.

I Not true under PSO, which can also end with z = 0.
I To ensure proper message-passing in PSO use a fence

between x :=37 and y :=1, to prevent write/write relaxation.

19 / 23



Litmus Test 3
Independent Reads of Independent Writes SC 7 TSO 7 PSO 3

x :=1 ‖ y :=1 ‖ (z1:=x ; z2:=y) ‖ (w1:=y ; w2:=x)

I Under PSO there is an execution from

[x : 0, y : 0, . . .]

to
[x : 1, y : 1, z1 : 1, z2 : 0,w1 : 1,w2 : 0]

in which the threads “see” the writes in different orders.
I Not true under SC and TSO, which guarantee a total order on

all writes.

20 / 23



Litmus Test 4
Coherence SC 3 TSO 3 PSO 3

x :=1 ‖ x :=2 ‖ (z1:=x ; z2:=x) ‖ (w1:=x ; w2:=x)

I In all these memory models, there is no execution from

[x : 0, y : 0, . . .]

ending with

z1 = 1, z2 = 2,w1 = 2,w2 = 1.

I Writes to x appear in the same order, to all threads.
All models guarantee to a per-location total store order.

21 / 23



Looking back, going forward

“We are not the first to advocate partial-order semantics.”
Pratt 1986

I Pratt’s pomsets were a “true concurrency” process algebra
I “actions” as uninterpreted symbols, no state or execution

I Mostly concerned with abstract properties, e.g.
A poset is representable as the set of its linearizations.

I Not true for executions:
EM(P) 6=

⋃
{EM(P ′) | P ′ ∈ Lin(P)}

I Pioneering work by Petri, Greif, Mazurkiewicz, Winskel, . . .
I Petri nets, . . . , event structures

Partial-order semantics provide an appropriate
denotational setting for exploring relaxed memory. . .

22 / 23



Conclusions

I Denotational semantics is alive and kicking, as it turns 50. . .
“The estimation of a theory is not simply

determined by its truth. It also depends upon the
importance of its subject, and the extent of its
applications, beyond which something must still be
left to the arbitrariness of human opinion.”

George Boole, 1847.

I It’s useful to revisit, and question, established tradition. . .
“The one duty we owe to history is to rewrite it.”

Oscar Wilde

HAPPY BIRTHDAY, DANA

23 / 23


