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Relating two facets of Dana’s work

As well as founding Domain theory, Dana is, of course, a pre-eminent figure in
logic, with seminal contributions in model theory, set theory, modal logic, . . .

This talk will, in a modest way, relate these different facets.

(Actually, I believe (thanks to Luca Reggio) that this can be taken much further;
however, this will have to be left to future work!)

Based on:

The pebbling comonad in finite model theory, SA, Anuj Dawar and Pengming
Wang, LiCS 2017

Relating Structure to Power: comonadic semantics for computational
resources, SA and Nihil Shah, to appear in CSL 2018.
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Model theory and deception

A famous notion in logic is that of Scott sentences: Lω1,ω sentences which
characterize countable structures up to isomorphism.

In general though, model theory involves deception:

In model theory, we see a structure, not “as it really is” (up to isomorphism)
but only up to definable properties.

The crucial notion is equivalence of structures up to the equivalence ≡L

induced by the logic L:

A ≡L B
∆⇐⇒ ∀ϕ ∈ L. A |= ϕ ⇐⇒ B |= ϕ.

It is always true that if a class of structures K is definable in L, then K must
be saturated under ≡L.

In most cases of interest in FMT, the converse is true too.

In descriptive complexity, we seek to characterize a complexity class C (for
decision problems) as those classes of structures K (e.g. graphs) definable in
L.
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Syntax-independent characterizations of logical equivalence

A classic theme in Model theory: e.g. the Keisler-Shelah theorem.

Especially important in finite model theory, where model comparison games
such as Ehrenfeucht-Fräıssé games, pebble games and bisimulation games
play a central role.

The EF-game between A and B. In the i ’th round, Spoiler moves by choosing an
element in A or B; Duplicator responds by choosing an element in the other
structure. Duplicator wins after k rounds if the relation {(ai , bi ) | 1 ≤ i ≤ k} is a
partial isomorphism.

In the existential EF-game, Spoiler only plays in A, and Duplicator responds in B.

The Ehrenfeucht-Fräıssé theorem says that a winning strategy for Duplicator in
the k-round EF game characterizes the equivalence ≡Lk , where Lk is the
fragment of first-order logic of formulas with quantifier rank ≤ k.

Similarly, there are k-pebble games, and bismulation games played to depth k.
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The Ehrenfeucht-Fräıssé theorem says that a winning strategy for Duplicator in
the k-round EF game characterizes the equivalence ≡Lk , where Lk is the
fragment of first-order logic of formulas with quantifier rank ≤ k.

Similarly, there are k-pebble games, and bismulation games played to depth k.

Samson Abramsky (Department of Computer Science, University of Oxford)Approximating partial by total: fixpoint characterizations of back-and-forth equivalences 4 / 21



Syntax-independent characterizations of logical equivalence

A classic theme in Model theory: e.g. the Keisler-Shelah theorem.

Especially important in finite model theory, where model comparison games
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Pebble Games

Similar but subtly different to EF-games

Spoiler moves by placing one from a fixed set of pebbles on an element of A or B;
Duplicator responds by placing their matching pebble on an element of the other
structure.

Duplicator wins if after each round, the relation defined by the current positions of
the pebbles is a partial isomorphism

Thus there is a “sliding window” on the structures, of fixed size. It is this size
which bounds the resource, not the length of the play.

Whereas the k-round EF game corresponds to bounding the quantifier rank,
k-pebble games correspond to bounding the number of variables which can be
used in a formula.

Just as for EF-games, there is an existential-positive version, in which Spoiler only
plays in A, and Duplicator responds in B.
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A new perspective

We shall study these games, not as external artefacts, but as semantic
constructions in their own right.

For each type of game G, and value of the resource parameter k, we shall
define a corresponding comonad Ck on R(σ).

The idea is that Duplicator strategies for the existential version of G-games
from A to B will be recovered as coKleisli morphisms CkA→ B.

Thus the notion of local approximation built into the game is internalised
into the category of σ-structures and homomorphisms.

This leads to comonadic and coalgebraic characterisations of a number of
central concepts in Finite Model Theory and combinatorics.
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The setting: homomorphisms of relational structures

A relational vocabulary σ is a family of relation symbols R, each of some arity
n > 0.

A relational structure for σ is A = (A, {RA | R ∈ σ})), where RA ⊆ An.

A homomorphism of σ-structures f : A→ B is a function f : A→ B such that,
for each relation R ∈ σ of arity n and (a1, . . . , an) ∈ An:

(a1, . . . , an) ∈ RA ⇒ (f (a1), . . . , f (an))) ∈ RB.

There notions are pervasive in

logic (model theory),

computer science (databases, constraint satisfaction, finite model theory)

combinatorics (graphs and graph homomorphisms).

Our setting will be R(σ), the category of relational structures and
homomorphisms.
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The EF comonad

Given a structure A, the universe of EkA is A≤k , the non-empty sequences of
length ≤ k.

The counit map εA : EkA→ A sends a sequence [a1, . . . , an] to an.

How do we lift the relations on A to EkA?

Given e.g. a binary relation R, we define REkA to the set of pairs (s, t) such that

s v t or t v s (in prefix order)

RA(εA(s), εA(t)).

Given a homomorphism f : EkA→ B, we define the coextension f ∗ : A≤k → B≤k

by
f ∗[a1, . . . , aj ] = [b1, . . . , bj ],

where bi = f [a1, . . . , ai ], 1 ≤ i ≤ j .

This is easily verified to yield a comonad on R(σ).
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CoKleisli maps are strategies
Intuitively, an element of A≤k represents a play in A of length ≤ k.

A coKleisli morphism EkA→ B represents a Duplicator strategy for the
existential Ehrenfeucht-Fräıssé game with k rounds:

Spoiler plays only in A, and bi = f [a1, . . . , ai ] represents Duplicator’s response in
B to the i ’th move by Spoiler.

The winning condition for Duplicator in this game is that, after k rounds have
been played, the induced relation {(ai , bi ) | 1 ≤ i ≤ k} is a partial homomorphism
from A to B.

Theorem

The following are equivalent:

1 There is a homomorphism EkA→ B.

2 Duplicator has a winning strategy for the existential
Ehrenfeucht-Fräıssé game with k rounds, played from A to B.

3 For every existential positive sentence ϕ with quantifier rank ≤ k,
A |= ϕ ⇒ B |= ϕ.
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The pebbling comonad

Given a structure A, the universe of PkA is (k× A)+, the set of finite non-empty
sequences of moves (p, a). Note this will be infinite even if A is finite.
We showed that this is essential!

The counit map εA : EkA→ A sends a sequence [(p1, a1), . . . , (pn, an)] to an.

How do we lift the relations on A to EkA?

Given e.g. a binary relation R, we define RPkA to the set of pairs (s, t) such that

s v t or t v s

If s v t, then the pebble index of the last move in s does not appear in the
suffix of s in t; and symmetrically if t v s.

RA(εA(s), εA(t)).

Given a homomorphism f : PkA→ B, we define the coextension f ∗ : PkA→ PkB

by
f ∗[(p1, a1), . . . , (pj , aj)] = [(p1, b1), . . . , (pj , bj)],

where bi = f [(p1, a1), . . . , (pi , ai )], 1 ≤ i ≤ j .
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The modal comonad

The flexibility of the comonadic approach is illustrated by showing that it also
covers the well-known construction of unfolding a Kripke structure into a tree
(“unravelling”).

For the modal case, we assume that the relational vocabulary σ contains only
symbols of arity at most 2.

We can thus regard a σ-structure as a Kripke structure for a multi-modal logic. If
there are no unary symbols, such structures are exactly the labelled transition
systems.

Modal logic localizes its notion of satisfaction in a structure to a world.
We reflect this by using the category of pointed relational structures (A, a).

For k > 0 we define a comonad Mk , where Mk(A, a) corresponds to unravelling
the structure A, starting from a, to depth k.

The universe of Mk(A, a) comprises [a], which is the distinguished element,
together with all sequences of the form [a0, α1, a1, . . . , αj , aj ], where a = a0,
1 ≤ j ≤ k, and RA

αi
(ai , ai+1), 0 ≤ i < j .
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Simulation

The resource index of Mk corresponds to the level of approximation in simulation
�k and bisimulation ∼k .

Theorem

Let A, B be Kripke structures, with a ∈ A and b ∈ B, and k > 0. The following
are equivalent:

1 There is a homomorphism f : Mk(A, a)→ (B, b).

2 a �k b.

3 There is a winning strategy for Duplicator in the k-round simulation game
from (A, a) to (B, b).
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Logical equivalences

For each of our three types of game, there are corresponding fragments Lk of
first-order logic:

For Ehrenfeucht-Fräıssé games, Lk is the fragment of quantifier-rank ≤ k.

For pebble games, Lk is the k-variable fragment.

For bismulation games over relational vocabularies with symbols of arity at
most 2, Lk is the modal fragment with modal depth ≤ k.

In each case, we write

∃Lk for the existential positive fragment of Lk

Lk(#) for the extension of Lk with counting quantifiers ∃≤n, ∃≥n
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Characterization

We can generically define two equivalences based on our indexed comonads Ek :

A �E
k B iff there are coKleisli morphisms EkA→ B and EkB→ A. Note

that there need be no relationship between these morphisms.

A ∼=E
k B iff A and B are isomorphic in the coKleisli category Kl(Ek).

Theorem
For structures A and B:

A ≡∃Lk B ⇐⇒ A �k B.
A ≡Lk (#) B ⇐⇒ A ∼=Kl(Ck ) B.
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From Forth to Back and Forth

To complete the picture, we need to show how to define a back-and-forth
equivalence ↔k which characterizes ≡Lk purely in terms of coKleisli morphisms.

Our solution to this will have the following features:

While not completely generic, it will be general enough to apply to all our
game comonads – so we subsume EF equivalence, bisimulation equivalence
and pebble game equivalence as instances of a single construction.

It uses approximations and fixpoints.

The approximation is “from above”. E.g. we use total homomorphisms to
approximate partial isomorphisms in the EF case.

We assume that for each structure A, the universe CkA has a forest order v
(prefix ordering on sequences in our examples). We add a root ⊥ for convenience.

We write the covering relation for this order as ≺; thus s ≺ t iff s v t, s 6= t, and
for all u, s v u v t implies u = s or u = t.
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General back-and-forth game

The definition is parameterized on a set WA,B ⊆ CkA× CkB of “winning
positions” for each pair of structures A, B.

We define the back-and-forth Ck game between A and B as follows:

At the start of each round of the game, the position is specified by
(s, t) ∈ CkA× CkB. The initial position is (⊥,⊥).

Either Spoiler chooses some s ′ � s, and Duplicator responds with t ′ � t,
resulting in (s ′, t ′); or Spoiler chooses t ′′ � t and Duplicator responds with
s ′′ � s, resulting in (s ′′, t ′′).

Duplicator wins after k rounds if the resulting position (s, t) is in WA,B.

This is essentially bisimulation up to WA,B.

By instantiating WA,B appropriately, we obtain the equivalences corresponding to
the EF, pebbling and bisimulation games.

For example, WEk

A,B is the set of all (s, t) which define a partial isomorphism.
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Characterization by coKleisli morphisms

We define S(A,B) to be the set of all functions f : CkA→ B such that, for all
s ∈ CkA, (s, f ∗(s)) ∈WA,B.

A locally invertible pair (F ,G ) from A to B is a pair of sets F ⊆ S(A,B),
G ⊆ S(B,A), satisfying the following conditions:

1 For all f ∈ F , s ∈ CkA, for some g ∈ G , g∗f ∗(s) = s.

2 For all g ∈ G , t ∈ CkB, for some f ∈ F , f ∗g∗(t) = t.

We define A↔C
k B iff there is a non-empty locally invertible pair from A to B.

Proposition

The following are equivalent:

1 A↔C
k B.

2 There is a winning strategy for Duplicator in the Ck game between A and B.
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A fixpoint characterization

Write S := S(A,B), T := S(B,A).

Define set functions Γ : P(S)→ P(T ), ∆ : P(T )→ P(S):

Γ(F ) = {g ∈ T | ∀t ∈ CkB.∃f ∈ F . f ∗g∗t = t},
∆(G ) = {f ∈ S | ∀s ∈ CkA.∃g ∈ G . g∗f ∗s = s}.

These functions are monotone. Moreover, a pair of sets (F ,G ) is locally invertible
iff F ⊆ ∆(G ) and G ⊆ Γ(F ).

Thus existence of a locally invertible pair is equivalent to the existence of
non-empty F such that F ⊆ Θ(F ), where Θ = ∆Γ.

Since Θ is monotone, by Knaster-Tarski this is equivalent to the greatest fixpoint
of Θ being non-empty. (Note that Θ(∅) = ∅).

If A and B are finite, so is S , and we can construct the greatest fixpoint by a
finite descending sequence S ⊇ Θ(S) ⊇ Θ2(S) ⊇ · · · .

This fixpoint is non-empty iff A↔E
k B.
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Logical Equivalences

We can now complete our results on logical equivalences.

Theorem
For structures A and B:

(1) A ≡∃Lk B ⇐⇒ A �k B.
(2) A ≡Lk B ⇐⇒ A↔k B.
(3) A ≡Lk (#) B ⇐⇒ A ∼=Kl(Ck ) B.

Note that this is really a family of three theorems, one for each type of game G.

Thus in each case, we capture the salient logical equivalences in syntax-free,
categorical form.
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Coalgebraic characterization of combinatorial parameters
There is a beautiful connection between these indexed comonads and
combinatorial invariants of structures.

We define the coalgebra number of a structure A, with respect to the indexed
family of comonads Ck , to be the least k such that there is a Ck -coalgebra on A.

Theorem
For the Ehrenfeucht-Fräıssé comonad, the coalgebra number of A
corresponds precisely to the tree-depth of A.

For the pebbling comonad, the coalgebra number of A corresponds precisely
to the tree-width of A.

For the modal comonad, the coalgebra number of A corresponds precisely to
the synchronization tree depth of A.

The main idea behind these results is that coalgebras on A are in bijective
correspondence with decompositions of A of the appropriate form.

We thus obtain categorical characterizations of these key combinatorial
parameters.
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Final Remarks

Our three comonadic constructions show a striking unity, but also some very
interesting differences.

Need to understand better what makes these constructions work, and what
the scope of these ideas are.

Currently investigating the guarded fragment. Other natural candidates
include existential second-order logic, and branching quantifiers and
dependence logic.

Wider horizons: can we connect with significant meta-algorithms, such as
decision procedures for guarded logics based on the tree model property, or
algorithmic metatheorems such as Courcelle’s theorem?

The wider issue: can we get Structure and Power to work with each other to
address genuinely deep questions?
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